Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Ask your questions and receive precise answers from experienced professionals across different disciplines. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Let's start by identifying the components of the given geometric series:
[tex]\[ \frac{1}{3} + \frac{2}{9} + \frac{4}{27} + \frac{8}{81} + \frac{16}{243} \][/tex]
In a geometric series, each term is obtained by multiplying the previous term by the common ratio.
1. The first term, [tex]\( a \)[/tex], is [tex]\(\frac{1}{3}\)[/tex].
2. To find the common ratio, [tex]\( r \)[/tex], we divide the second term by the first term:
[tex]\[ r = \frac{\frac{2}{9}}{\frac{1}{3}} = \frac{2}{9} \times \frac{3}{1} = \frac{2}{3} \][/tex]
Now, we have the first term [tex]\( a = \frac{1}{3} \)[/tex] and the common ratio [tex]\( r = \frac{2}{3} \)[/tex]. We are supposed to find the sum of the first 5 terms, [tex]\( S_5 \)[/tex].
The formula for the sum [tex]\( S_n \)[/tex] of the first [tex]\( n \)[/tex] terms of a geometric series is given by:
[tex]\[ S_n = a \frac{1-r^n}{1-r} \][/tex]
For [tex]\( n = 5 \)[/tex]:
[tex]\[ S_5 = \frac{\frac{1}{3} \left(1 - \left(\frac{2}{3}\right)^5\right)}{1 - \frac{2}{3}} \][/tex]
Checking the provided options, we have:
1. [tex]\( S_5 = \frac{\frac{1}{3}\left(1-\left(\frac{2}{3}\right)^5\right)}{\left(1-\frac{2}{3}\right)} \)[/tex]
2. [tex]\( S_5 = \frac{\frac{2}{3}\left(1-\left(\frac{1}{3}\right)^5\right)}{\left(1-\frac{1}{3}\right)} \)[/tex]
From our calculations, we see that the correct equation to use is the first one because it matches our derived formula exactly.
Also, the result calculated from this equation is approximately [tex]\( 0.8683 \)[/tex].
Thus, the correct equation to use is:
[tex]\[ S_5 = \frac{\frac{1}{3}\left(1-\left(\frac{2}{3}\right)^5\right)}{\left(1-\frac{2}{3}\right)} \][/tex]
[tex]\[ \frac{1}{3} + \frac{2}{9} + \frac{4}{27} + \frac{8}{81} + \frac{16}{243} \][/tex]
In a geometric series, each term is obtained by multiplying the previous term by the common ratio.
1. The first term, [tex]\( a \)[/tex], is [tex]\(\frac{1}{3}\)[/tex].
2. To find the common ratio, [tex]\( r \)[/tex], we divide the second term by the first term:
[tex]\[ r = \frac{\frac{2}{9}}{\frac{1}{3}} = \frac{2}{9} \times \frac{3}{1} = \frac{2}{3} \][/tex]
Now, we have the first term [tex]\( a = \frac{1}{3} \)[/tex] and the common ratio [tex]\( r = \frac{2}{3} \)[/tex]. We are supposed to find the sum of the first 5 terms, [tex]\( S_5 \)[/tex].
The formula for the sum [tex]\( S_n \)[/tex] of the first [tex]\( n \)[/tex] terms of a geometric series is given by:
[tex]\[ S_n = a \frac{1-r^n}{1-r} \][/tex]
For [tex]\( n = 5 \)[/tex]:
[tex]\[ S_5 = \frac{\frac{1}{3} \left(1 - \left(\frac{2}{3}\right)^5\right)}{1 - \frac{2}{3}} \][/tex]
Checking the provided options, we have:
1. [tex]\( S_5 = \frac{\frac{1}{3}\left(1-\left(\frac{2}{3}\right)^5\right)}{\left(1-\frac{2}{3}\right)} \)[/tex]
2. [tex]\( S_5 = \frac{\frac{2}{3}\left(1-\left(\frac{1}{3}\right)^5\right)}{\left(1-\frac{1}{3}\right)} \)[/tex]
From our calculations, we see that the correct equation to use is the first one because it matches our derived formula exactly.
Also, the result calculated from this equation is approximately [tex]\( 0.8683 \)[/tex].
Thus, the correct equation to use is:
[tex]\[ S_5 = \frac{\frac{1}{3}\left(1-\left(\frac{2}{3}\right)^5\right)}{\left(1-\frac{2}{3}\right)} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.