Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Sure, let's examine the equation provided,
[tex]\[ r = 0.1 \cdot \cos \left( \pi t - \frac{3 \pi}{2} \right) \][/tex]
The equilibrium position of the pendulum is when the angle [tex]\( r \)[/tex] is 0. Therefore, we need to find the values of [tex]\( t \)[/tex] for which [tex]\( r = 0 \)[/tex].
Given:
[tex]\[ 0 = 0.1 \cdot \cos \left( \pi t - \frac{3 \pi}{2} \right) \][/tex]
This means,
[tex]\[ \cos \left( \pi t- \frac{3 \pi}{2} \right) = 0 \][/tex]
The cosine function [tex]\( \cos(\theta) = 0 \)[/tex] when [tex]\( \theta = \frac{\pi}{2} + k\pi \)[/tex], where [tex]\( k \)[/tex] is any integer. So we set the inside of the cosine function to these values:
[tex]\[ \pi t - \frac{3 \pi}{2} = \frac{\pi}{2} + k\pi \][/tex]
[tex]\[ \pi t - \frac{3 \pi}{2} = \frac{\pi}{2} + k\pi \][/tex]
Let's solve for [tex]\( t \)[/tex]:
[tex]\[ \pi t - \frac{3 \pi}{2} = \frac{\pi}{2} + k\pi \][/tex]
[tex]\[ \pi t = \frac{\pi}{2} + \frac{3 \pi}{2} + k\pi \][/tex]
[tex]\[ \pi t = \pi + k\pi \][/tex]
[tex]\[ t = 1 + k \][/tex]
The points where the pendulum is at its equilibrium position occur at:
[tex]\[ t = 1 + k \][/tex]
This can be written as:
[tex]\[ t = 1, 2, 3, 4, \ldots \][/tex]
Thus, the pendulum is at equilibrium position at [tex]\( t = 1, 2, 3, \ldots \)[/tex].
So when we plot these coordinates on a graph [tex]\( (t, r) \)[/tex]:
- At [tex]\( t = 1 \)[/tex], [tex]\( r = 0 \)[/tex]
- At [tex]\( t = 2 \)[/tex], [tex]\( r = 0 \)[/tex]
- At [tex]\( t = 3 \)[/tex], [tex]\( r = 0 \)[/tex]
- And so on...
These points can be illustrated on a graph as points along the [tex]\( t \)[/tex]-axis where [tex]\( r = 0 \)[/tex].
[tex]\[ r = 0.1 \cdot \cos \left( \pi t - \frac{3 \pi}{2} \right) \][/tex]
The equilibrium position of the pendulum is when the angle [tex]\( r \)[/tex] is 0. Therefore, we need to find the values of [tex]\( t \)[/tex] for which [tex]\( r = 0 \)[/tex].
Given:
[tex]\[ 0 = 0.1 \cdot \cos \left( \pi t - \frac{3 \pi}{2} \right) \][/tex]
This means,
[tex]\[ \cos \left( \pi t- \frac{3 \pi}{2} \right) = 0 \][/tex]
The cosine function [tex]\( \cos(\theta) = 0 \)[/tex] when [tex]\( \theta = \frac{\pi}{2} + k\pi \)[/tex], where [tex]\( k \)[/tex] is any integer. So we set the inside of the cosine function to these values:
[tex]\[ \pi t - \frac{3 \pi}{2} = \frac{\pi}{2} + k\pi \][/tex]
[tex]\[ \pi t - \frac{3 \pi}{2} = \frac{\pi}{2} + k\pi \][/tex]
Let's solve for [tex]\( t \)[/tex]:
[tex]\[ \pi t - \frac{3 \pi}{2} = \frac{\pi}{2} + k\pi \][/tex]
[tex]\[ \pi t = \frac{\pi}{2} + \frac{3 \pi}{2} + k\pi \][/tex]
[tex]\[ \pi t = \pi + k\pi \][/tex]
[tex]\[ t = 1 + k \][/tex]
The points where the pendulum is at its equilibrium position occur at:
[tex]\[ t = 1 + k \][/tex]
This can be written as:
[tex]\[ t = 1, 2, 3, 4, \ldots \][/tex]
Thus, the pendulum is at equilibrium position at [tex]\( t = 1, 2, 3, \ldots \)[/tex].
So when we plot these coordinates on a graph [tex]\( (t, r) \)[/tex]:
- At [tex]\( t = 1 \)[/tex], [tex]\( r = 0 \)[/tex]
- At [tex]\( t = 2 \)[/tex], [tex]\( r = 0 \)[/tex]
- At [tex]\( t = 3 \)[/tex], [tex]\( r = 0 \)[/tex]
- And so on...
These points can be illustrated on a graph as points along the [tex]\( t \)[/tex]-axis where [tex]\( r = 0 \)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.