Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Sure, let's examine the equation provided,
[tex]\[ r = 0.1 \cdot \cos \left( \pi t - \frac{3 \pi}{2} \right) \][/tex]
The equilibrium position of the pendulum is when the angle [tex]\( r \)[/tex] is 0. Therefore, we need to find the values of [tex]\( t \)[/tex] for which [tex]\( r = 0 \)[/tex].
Given:
[tex]\[ 0 = 0.1 \cdot \cos \left( \pi t - \frac{3 \pi}{2} \right) \][/tex]
This means,
[tex]\[ \cos \left( \pi t- \frac{3 \pi}{2} \right) = 0 \][/tex]
The cosine function [tex]\( \cos(\theta) = 0 \)[/tex] when [tex]\( \theta = \frac{\pi}{2} + k\pi \)[/tex], where [tex]\( k \)[/tex] is any integer. So we set the inside of the cosine function to these values:
[tex]\[ \pi t - \frac{3 \pi}{2} = \frac{\pi}{2} + k\pi \][/tex]
[tex]\[ \pi t - \frac{3 \pi}{2} = \frac{\pi}{2} + k\pi \][/tex]
Let's solve for [tex]\( t \)[/tex]:
[tex]\[ \pi t - \frac{3 \pi}{2} = \frac{\pi}{2} + k\pi \][/tex]
[tex]\[ \pi t = \frac{\pi}{2} + \frac{3 \pi}{2} + k\pi \][/tex]
[tex]\[ \pi t = \pi + k\pi \][/tex]
[tex]\[ t = 1 + k \][/tex]
The points where the pendulum is at its equilibrium position occur at:
[tex]\[ t = 1 + k \][/tex]
This can be written as:
[tex]\[ t = 1, 2, 3, 4, \ldots \][/tex]
Thus, the pendulum is at equilibrium position at [tex]\( t = 1, 2, 3, \ldots \)[/tex].
So when we plot these coordinates on a graph [tex]\( (t, r) \)[/tex]:
- At [tex]\( t = 1 \)[/tex], [tex]\( r = 0 \)[/tex]
- At [tex]\( t = 2 \)[/tex], [tex]\( r = 0 \)[/tex]
- At [tex]\( t = 3 \)[/tex], [tex]\( r = 0 \)[/tex]
- And so on...
These points can be illustrated on a graph as points along the [tex]\( t \)[/tex]-axis where [tex]\( r = 0 \)[/tex].
[tex]\[ r = 0.1 \cdot \cos \left( \pi t - \frac{3 \pi}{2} \right) \][/tex]
The equilibrium position of the pendulum is when the angle [tex]\( r \)[/tex] is 0. Therefore, we need to find the values of [tex]\( t \)[/tex] for which [tex]\( r = 0 \)[/tex].
Given:
[tex]\[ 0 = 0.1 \cdot \cos \left( \pi t - \frac{3 \pi}{2} \right) \][/tex]
This means,
[tex]\[ \cos \left( \pi t- \frac{3 \pi}{2} \right) = 0 \][/tex]
The cosine function [tex]\( \cos(\theta) = 0 \)[/tex] when [tex]\( \theta = \frac{\pi}{2} + k\pi \)[/tex], where [tex]\( k \)[/tex] is any integer. So we set the inside of the cosine function to these values:
[tex]\[ \pi t - \frac{3 \pi}{2} = \frac{\pi}{2} + k\pi \][/tex]
[tex]\[ \pi t - \frac{3 \pi}{2} = \frac{\pi}{2} + k\pi \][/tex]
Let's solve for [tex]\( t \)[/tex]:
[tex]\[ \pi t - \frac{3 \pi}{2} = \frac{\pi}{2} + k\pi \][/tex]
[tex]\[ \pi t = \frac{\pi}{2} + \frac{3 \pi}{2} + k\pi \][/tex]
[tex]\[ \pi t = \pi + k\pi \][/tex]
[tex]\[ t = 1 + k \][/tex]
The points where the pendulum is at its equilibrium position occur at:
[tex]\[ t = 1 + k \][/tex]
This can be written as:
[tex]\[ t = 1, 2, 3, 4, \ldots \][/tex]
Thus, the pendulum is at equilibrium position at [tex]\( t = 1, 2, 3, \ldots \)[/tex].
So when we plot these coordinates on a graph [tex]\( (t, r) \)[/tex]:
- At [tex]\( t = 1 \)[/tex], [tex]\( r = 0 \)[/tex]
- At [tex]\( t = 2 \)[/tex], [tex]\( r = 0 \)[/tex]
- At [tex]\( t = 3 \)[/tex], [tex]\( r = 0 \)[/tex]
- And so on...
These points can be illustrated on a graph as points along the [tex]\( t \)[/tex]-axis where [tex]\( r = 0 \)[/tex].
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.