Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Sure, let's examine the equation provided,
[tex]\[ r = 0.1 \cdot \cos \left( \pi t - \frac{3 \pi}{2} \right) \][/tex]
The equilibrium position of the pendulum is when the angle [tex]\( r \)[/tex] is 0. Therefore, we need to find the values of [tex]\( t \)[/tex] for which [tex]\( r = 0 \)[/tex].
Given:
[tex]\[ 0 = 0.1 \cdot \cos \left( \pi t - \frac{3 \pi}{2} \right) \][/tex]
This means,
[tex]\[ \cos \left( \pi t- \frac{3 \pi}{2} \right) = 0 \][/tex]
The cosine function [tex]\( \cos(\theta) = 0 \)[/tex] when [tex]\( \theta = \frac{\pi}{2} + k\pi \)[/tex], where [tex]\( k \)[/tex] is any integer. So we set the inside of the cosine function to these values:
[tex]\[ \pi t - \frac{3 \pi}{2} = \frac{\pi}{2} + k\pi \][/tex]
[tex]\[ \pi t - \frac{3 \pi}{2} = \frac{\pi}{2} + k\pi \][/tex]
Let's solve for [tex]\( t \)[/tex]:
[tex]\[ \pi t - \frac{3 \pi}{2} = \frac{\pi}{2} + k\pi \][/tex]
[tex]\[ \pi t = \frac{\pi}{2} + \frac{3 \pi}{2} + k\pi \][/tex]
[tex]\[ \pi t = \pi + k\pi \][/tex]
[tex]\[ t = 1 + k \][/tex]
The points where the pendulum is at its equilibrium position occur at:
[tex]\[ t = 1 + k \][/tex]
This can be written as:
[tex]\[ t = 1, 2, 3, 4, \ldots \][/tex]
Thus, the pendulum is at equilibrium position at [tex]\( t = 1, 2, 3, \ldots \)[/tex].
So when we plot these coordinates on a graph [tex]\( (t, r) \)[/tex]:
- At [tex]\( t = 1 \)[/tex], [tex]\( r = 0 \)[/tex]
- At [tex]\( t = 2 \)[/tex], [tex]\( r = 0 \)[/tex]
- At [tex]\( t = 3 \)[/tex], [tex]\( r = 0 \)[/tex]
- And so on...
These points can be illustrated on a graph as points along the [tex]\( t \)[/tex]-axis where [tex]\( r = 0 \)[/tex].
[tex]\[ r = 0.1 \cdot \cos \left( \pi t - \frac{3 \pi}{2} \right) \][/tex]
The equilibrium position of the pendulum is when the angle [tex]\( r \)[/tex] is 0. Therefore, we need to find the values of [tex]\( t \)[/tex] for which [tex]\( r = 0 \)[/tex].
Given:
[tex]\[ 0 = 0.1 \cdot \cos \left( \pi t - \frac{3 \pi}{2} \right) \][/tex]
This means,
[tex]\[ \cos \left( \pi t- \frac{3 \pi}{2} \right) = 0 \][/tex]
The cosine function [tex]\( \cos(\theta) = 0 \)[/tex] when [tex]\( \theta = \frac{\pi}{2} + k\pi \)[/tex], where [tex]\( k \)[/tex] is any integer. So we set the inside of the cosine function to these values:
[tex]\[ \pi t - \frac{3 \pi}{2} = \frac{\pi}{2} + k\pi \][/tex]
[tex]\[ \pi t - \frac{3 \pi}{2} = \frac{\pi}{2} + k\pi \][/tex]
Let's solve for [tex]\( t \)[/tex]:
[tex]\[ \pi t - \frac{3 \pi}{2} = \frac{\pi}{2} + k\pi \][/tex]
[tex]\[ \pi t = \frac{\pi}{2} + \frac{3 \pi}{2} + k\pi \][/tex]
[tex]\[ \pi t = \pi + k\pi \][/tex]
[tex]\[ t = 1 + k \][/tex]
The points where the pendulum is at its equilibrium position occur at:
[tex]\[ t = 1 + k \][/tex]
This can be written as:
[tex]\[ t = 1, 2, 3, 4, \ldots \][/tex]
Thus, the pendulum is at equilibrium position at [tex]\( t = 1, 2, 3, \ldots \)[/tex].
So when we plot these coordinates on a graph [tex]\( (t, r) \)[/tex]:
- At [tex]\( t = 1 \)[/tex], [tex]\( r = 0 \)[/tex]
- At [tex]\( t = 2 \)[/tex], [tex]\( r = 0 \)[/tex]
- At [tex]\( t = 3 \)[/tex], [tex]\( r = 0 \)[/tex]
- And so on...
These points can be illustrated on a graph as points along the [tex]\( t \)[/tex]-axis where [tex]\( r = 0 \)[/tex].
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.