At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

Which point would map onto itself after a reflection across the line [tex]\(y = x\)[/tex]?

A. [tex]\((-4, -4)\)[/tex]
B. [tex]\((-4, 0)\)[/tex]
C. [tex]\((0, -4)\)[/tex]
D. [tex]\((4, -4)\)[/tex]


Sagot :

To determine which point would map onto itself after a reflection across the line [tex]\( y = x \)[/tex], we need to understand how reflection works. A point [tex]\((a, b)\)[/tex] reflected across the line [tex]\( y = x \)[/tex] moves to the point [tex]\((b, a)\)[/tex].

So, for a point to map onto itself after reflection across the line [tex]\( y = x \)[/tex], the original point [tex]\((a, b)\)[/tex] must satisfy the condition:
[tex]\[ (a, b) = (b, a) \][/tex]
This implies that [tex]\( a \)[/tex] must be equal to [tex]\( b \)[/tex].

Now, let's analyze each given point:
1. [tex]\((-4, -4)\)[/tex]:
- Reflected point: [tex]\((-4, -4) \rightarrow (-4, -4)\)[/tex]
- Since [tex]\( -4 = -4 \)[/tex], this point maps onto itself.

2. [tex]\((-4, 0)\)[/tex]:
- Reflected point: [tex]\((-4, 0) \rightarrow (0, -4)\)[/tex]
- Since [tex]\( -4 \neq 0 \)[/tex], this point does not map onto itself.

3. [tex]\( (0, -4)\)[/tex]:
- Reflected point: [tex]\((0, -4) \rightarrow (-4, 0)\)[/tex]
- Since [tex]\( 0 \neq -4 \)[/tex], this point does not map onto itself.

4. [tex]\( (4, -4)\)[/tex]:
- Reflected point: [tex]\( (4, -4) \rightarrow (-4, 4)\)[/tex]
- Since [tex]\( 4 \neq -4 \)[/tex], this point does not map onto itself.

From the analysis, we can see that the only point that maps onto itself after the reflection across the line [tex]\( y = x \)[/tex] is [tex]\((-4, -4)\)[/tex].

Therefore, the point that would map onto itself after a reflection across the line [tex]\( y = x \)[/tex] is:
[tex]\[ \boxed{(-4, -4)} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.