Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Certainly, let's go through the step-by-step solution to determine the equation of the line passing through the points (3, -12) and (9, -24), and identify any errors in your steps.
### Given:
Points on line B: [tex]\((3, -12)\)[/tex] and [tex]\((9, -24)\)[/tex]
### Step 1: Determine the Slope for B
The formula for the slope [tex]\(m\)[/tex] between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Substitute the given points:
[tex]\[ m = \frac{-24 - (-12)}{9 - 3} = \frac{-24 + 12}{9 - 3} = \frac{-12}{6} = -2 \][/tex]
So, the slope [tex]\(m\)[/tex] of line B is [tex]\(-2\)[/tex].
### Step 2: Determine the [tex]\(y\)[/tex]-intercept for B
The slope-intercept form of a line is:
[tex]\[ y = mx + b \][/tex]
where [tex]\(m\)[/tex] is the slope and [tex]\(b\)[/tex] is the [tex]\(y\)[/tex]-intercept.
Using one of the points, e.g., [tex]\((3, -12)\)[/tex]:
[tex]\[ y = mx + b \][/tex]
[tex]\[ -12 = -2(3) + b \][/tex]
[tex]\[ -12 = -6 + b \][/tex]
Solving for [tex]\(b\)[/tex]:
[tex]\[ b = -12 + 6 = -6 \][/tex]
So, the [tex]\(y\)[/tex]-intercept [tex]\(b\)[/tex] for line B is [tex]\(-6\)[/tex].
### Step 3: Write the Equation in Slope-Intercept Form
With [tex]\(m = -2\)[/tex] and [tex]\(b = -6\)[/tex], the equation of line B is:
[tex]\[ y = -2x - 6 \][/tex]
### Summary
The correct equation for line B, based on the coordinates [tex]\((3, -12)\)[/tex] and [tex]\((9, -24)\)[/tex], is:
[tex]\[ y = -2x - 6 \][/tex]
There was an error in your calculation of the [tex]\(y\)[/tex]-intercept in Step 2, and the final equation for line B should be corrected as shown above.
### Given:
Points on line B: [tex]\((3, -12)\)[/tex] and [tex]\((9, -24)\)[/tex]
### Step 1: Determine the Slope for B
The formula for the slope [tex]\(m\)[/tex] between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Substitute the given points:
[tex]\[ m = \frac{-24 - (-12)}{9 - 3} = \frac{-24 + 12}{9 - 3} = \frac{-12}{6} = -2 \][/tex]
So, the slope [tex]\(m\)[/tex] of line B is [tex]\(-2\)[/tex].
### Step 2: Determine the [tex]\(y\)[/tex]-intercept for B
The slope-intercept form of a line is:
[tex]\[ y = mx + b \][/tex]
where [tex]\(m\)[/tex] is the slope and [tex]\(b\)[/tex] is the [tex]\(y\)[/tex]-intercept.
Using one of the points, e.g., [tex]\((3, -12)\)[/tex]:
[tex]\[ y = mx + b \][/tex]
[tex]\[ -12 = -2(3) + b \][/tex]
[tex]\[ -12 = -6 + b \][/tex]
Solving for [tex]\(b\)[/tex]:
[tex]\[ b = -12 + 6 = -6 \][/tex]
So, the [tex]\(y\)[/tex]-intercept [tex]\(b\)[/tex] for line B is [tex]\(-6\)[/tex].
### Step 3: Write the Equation in Slope-Intercept Form
With [tex]\(m = -2\)[/tex] and [tex]\(b = -6\)[/tex], the equation of line B is:
[tex]\[ y = -2x - 6 \][/tex]
### Summary
The correct equation for line B, based on the coordinates [tex]\((3, -12)\)[/tex] and [tex]\((9, -24)\)[/tex], is:
[tex]\[ y = -2x - 6 \][/tex]
There was an error in your calculation of the [tex]\(y\)[/tex]-intercept in Step 2, and the final equation for line B should be corrected as shown above.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.