Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Certainly, let's carefully analyze the given situation and equations. Sun is paddling upstream and downstream with the following details:
1. Distance to paddle upstream: 8 miles
2. Time taken to paddle upstream: 2 hours
3. Distance to paddle downstream: 8 miles
4. Time taken to paddle downstream: 1 hour
We are given two equations involving the paddling speed [tex]\( x \)[/tex] and the current speed [tex]\( y \)[/tex]:
[tex]\[ 2(x - y) = a \][/tex]
[tex]\[ b(x + y) = 8 \][/tex]
First, let's determine the speeds:
### Determining the Speeds
The effective speed going upstream (against the current) is:
[tex]\[ x - y = \frac{8 \text{ miles}}{2 \text{ hours}} = 4 \text{ mph} \][/tex]
The effective speed going downstream (with the current) is:
[tex]\[ x + y = \frac{8 \text{ miles}}{1 \text{ hour}} = 8 \text{ mph} \][/tex]
### Using the Equations
Now, let's substitute these effective speeds into the given equations to find [tex]\( a \)[/tex] and [tex]\( b \)[/tex]:
#### Equation 1
[tex]\[ 2(x - y) = a \][/tex]
Since [tex]\( x - y = 4 \)[/tex],
[tex]\[ 2(4) = a \][/tex]
[tex]\[ a = 8 \][/tex]
#### Equation 2
[tex]\[ b(x + y) = 8 \][/tex]
Since [tex]\( x + y = 8 \)[/tex],
[tex]\[ b(8) = 8 \][/tex]
[tex]\[ b = 1 \][/tex]
### Verifying the True Statements
We now verify which of the given statements are correct:
1. [tex]\( a = 8 \)[/tex] → True
2. [tex]\( b = 8 \)[/tex] → False
3. [tex]\( a = 1 \)[/tex] → False
4. [tex]\( b = 1 \)[/tex] → True
5. [tex]\( a = b \)[/tex] → False (since [tex]\( a = 8 \)[/tex] and [tex]\( b = 1 \)[/tex])
Therefore, the correct options are:
- [tex]\( a = 8 \)[/tex]
- [tex]\( b = 1 \)[/tex]
Thus, the true statements are:
[tex]\[ a = 8 \][/tex]
[tex]\[ b = 1 \][/tex]
1. Distance to paddle upstream: 8 miles
2. Time taken to paddle upstream: 2 hours
3. Distance to paddle downstream: 8 miles
4. Time taken to paddle downstream: 1 hour
We are given two equations involving the paddling speed [tex]\( x \)[/tex] and the current speed [tex]\( y \)[/tex]:
[tex]\[ 2(x - y) = a \][/tex]
[tex]\[ b(x + y) = 8 \][/tex]
First, let's determine the speeds:
### Determining the Speeds
The effective speed going upstream (against the current) is:
[tex]\[ x - y = \frac{8 \text{ miles}}{2 \text{ hours}} = 4 \text{ mph} \][/tex]
The effective speed going downstream (with the current) is:
[tex]\[ x + y = \frac{8 \text{ miles}}{1 \text{ hour}} = 8 \text{ mph} \][/tex]
### Using the Equations
Now, let's substitute these effective speeds into the given equations to find [tex]\( a \)[/tex] and [tex]\( b \)[/tex]:
#### Equation 1
[tex]\[ 2(x - y) = a \][/tex]
Since [tex]\( x - y = 4 \)[/tex],
[tex]\[ 2(4) = a \][/tex]
[tex]\[ a = 8 \][/tex]
#### Equation 2
[tex]\[ b(x + y) = 8 \][/tex]
Since [tex]\( x + y = 8 \)[/tex],
[tex]\[ b(8) = 8 \][/tex]
[tex]\[ b = 1 \][/tex]
### Verifying the True Statements
We now verify which of the given statements are correct:
1. [tex]\( a = 8 \)[/tex] → True
2. [tex]\( b = 8 \)[/tex] → False
3. [tex]\( a = 1 \)[/tex] → False
4. [tex]\( b = 1 \)[/tex] → True
5. [tex]\( a = b \)[/tex] → False (since [tex]\( a = 8 \)[/tex] and [tex]\( b = 1 \)[/tex])
Therefore, the correct options are:
- [tex]\( a = 8 \)[/tex]
- [tex]\( b = 1 \)[/tex]
Thus, the true statements are:
[tex]\[ a = 8 \][/tex]
[tex]\[ b = 1 \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.