Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Certainly, let's carefully analyze the given situation and equations. Sun is paddling upstream and downstream with the following details:
1. Distance to paddle upstream: 8 miles
2. Time taken to paddle upstream: 2 hours
3. Distance to paddle downstream: 8 miles
4. Time taken to paddle downstream: 1 hour
We are given two equations involving the paddling speed [tex]\( x \)[/tex] and the current speed [tex]\( y \)[/tex]:
[tex]\[ 2(x - y) = a \][/tex]
[tex]\[ b(x + y) = 8 \][/tex]
First, let's determine the speeds:
### Determining the Speeds
The effective speed going upstream (against the current) is:
[tex]\[ x - y = \frac{8 \text{ miles}}{2 \text{ hours}} = 4 \text{ mph} \][/tex]
The effective speed going downstream (with the current) is:
[tex]\[ x + y = \frac{8 \text{ miles}}{1 \text{ hour}} = 8 \text{ mph} \][/tex]
### Using the Equations
Now, let's substitute these effective speeds into the given equations to find [tex]\( a \)[/tex] and [tex]\( b \)[/tex]:
#### Equation 1
[tex]\[ 2(x - y) = a \][/tex]
Since [tex]\( x - y = 4 \)[/tex],
[tex]\[ 2(4) = a \][/tex]
[tex]\[ a = 8 \][/tex]
#### Equation 2
[tex]\[ b(x + y) = 8 \][/tex]
Since [tex]\( x + y = 8 \)[/tex],
[tex]\[ b(8) = 8 \][/tex]
[tex]\[ b = 1 \][/tex]
### Verifying the True Statements
We now verify which of the given statements are correct:
1. [tex]\( a = 8 \)[/tex] → True
2. [tex]\( b = 8 \)[/tex] → False
3. [tex]\( a = 1 \)[/tex] → False
4. [tex]\( b = 1 \)[/tex] → True
5. [tex]\( a = b \)[/tex] → False (since [tex]\( a = 8 \)[/tex] and [tex]\( b = 1 \)[/tex])
Therefore, the correct options are:
- [tex]\( a = 8 \)[/tex]
- [tex]\( b = 1 \)[/tex]
Thus, the true statements are:
[tex]\[ a = 8 \][/tex]
[tex]\[ b = 1 \][/tex]
1. Distance to paddle upstream: 8 miles
2. Time taken to paddle upstream: 2 hours
3. Distance to paddle downstream: 8 miles
4. Time taken to paddle downstream: 1 hour
We are given two equations involving the paddling speed [tex]\( x \)[/tex] and the current speed [tex]\( y \)[/tex]:
[tex]\[ 2(x - y) = a \][/tex]
[tex]\[ b(x + y) = 8 \][/tex]
First, let's determine the speeds:
### Determining the Speeds
The effective speed going upstream (against the current) is:
[tex]\[ x - y = \frac{8 \text{ miles}}{2 \text{ hours}} = 4 \text{ mph} \][/tex]
The effective speed going downstream (with the current) is:
[tex]\[ x + y = \frac{8 \text{ miles}}{1 \text{ hour}} = 8 \text{ mph} \][/tex]
### Using the Equations
Now, let's substitute these effective speeds into the given equations to find [tex]\( a \)[/tex] and [tex]\( b \)[/tex]:
#### Equation 1
[tex]\[ 2(x - y) = a \][/tex]
Since [tex]\( x - y = 4 \)[/tex],
[tex]\[ 2(4) = a \][/tex]
[tex]\[ a = 8 \][/tex]
#### Equation 2
[tex]\[ b(x + y) = 8 \][/tex]
Since [tex]\( x + y = 8 \)[/tex],
[tex]\[ b(8) = 8 \][/tex]
[tex]\[ b = 1 \][/tex]
### Verifying the True Statements
We now verify which of the given statements are correct:
1. [tex]\( a = 8 \)[/tex] → True
2. [tex]\( b = 8 \)[/tex] → False
3. [tex]\( a = 1 \)[/tex] → False
4. [tex]\( b = 1 \)[/tex] → True
5. [tex]\( a = b \)[/tex] → False (since [tex]\( a = 8 \)[/tex] and [tex]\( b = 1 \)[/tex])
Therefore, the correct options are:
- [tex]\( a = 8 \)[/tex]
- [tex]\( b = 1 \)[/tex]
Thus, the true statements are:
[tex]\[ a = 8 \][/tex]
[tex]\[ b = 1 \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.