Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To factor the expression [tex]\(49 x^2 - 81\)[/tex] completely, we can recognize that this is a difference of squares. The difference of squares is a common algebraic pattern that can be factored using the formula:
[tex]\[ a^2 - b^2 = (a - b)(a + b) \][/tex]
In this case, we need to identify [tex]\(a\)[/tex] and [tex]\(b\)[/tex] such that [tex]\(49 x^2\)[/tex] and [tex]\(81\)[/tex] are perfect squares.
1. Notice that [tex]\(49 x^2\)[/tex] is a perfect square:
[tex]\[ 49 x^2 = (7x)^2 \][/tex]
So [tex]\(a = 7x\)[/tex].
2. Notice that [tex]\(81\)[/tex] is also a perfect square:
[tex]\[ 81 = 9^2 \][/tex]
So [tex]\(b = 9\)[/tex].
Now we apply the difference of squares formula:
[tex]\[ 49 x^2 - 81 = (7x)^2 - 9^2 = (7x - 9)(7x + 9) \][/tex]
Thus, the factorization of [tex]\(49 x^2 - 81\)[/tex] is:
[tex]\[ (7x - 9)(7x + 9) \][/tex]
So, the completely factored form of [tex]\(49 x^2 - 81\)[/tex] is:
[tex]\[ (7x - 9)(7x + 9) \][/tex]
[tex]\[ a^2 - b^2 = (a - b)(a + b) \][/tex]
In this case, we need to identify [tex]\(a\)[/tex] and [tex]\(b\)[/tex] such that [tex]\(49 x^2\)[/tex] and [tex]\(81\)[/tex] are perfect squares.
1. Notice that [tex]\(49 x^2\)[/tex] is a perfect square:
[tex]\[ 49 x^2 = (7x)^2 \][/tex]
So [tex]\(a = 7x\)[/tex].
2. Notice that [tex]\(81\)[/tex] is also a perfect square:
[tex]\[ 81 = 9^2 \][/tex]
So [tex]\(b = 9\)[/tex].
Now we apply the difference of squares formula:
[tex]\[ 49 x^2 - 81 = (7x)^2 - 9^2 = (7x - 9)(7x + 9) \][/tex]
Thus, the factorization of [tex]\(49 x^2 - 81\)[/tex] is:
[tex]\[ (7x - 9)(7x + 9) \][/tex]
So, the completely factored form of [tex]\(49 x^2 - 81\)[/tex] is:
[tex]\[ (7x - 9)(7x + 9) \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.