Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To combine the given radicals, we need to handle like terms and simplify the expressions where possible. Here's the step-by-step solution:
### 1. Identify and group like terms
First, observe that we have radicals involving [tex]\(\sqrt{3}\)[/tex] and [tex]\(\sqrt{12}\)[/tex]. Notice that [tex]\(\sqrt{12}\)[/tex] can be rewritten as [tex]\(\sqrt{4 \cdot 3} = 2\sqrt{3}\)[/tex]. By doing this, we can transform all terms into expressions involving [tex]\(\sqrt{3}\)[/tex].
### 2. Convert [tex]\(\sqrt{12}\)[/tex] terms to [tex]\(\sqrt{3}\)[/tex]
- The term [tex]\( -12 \sqrt{12} \)[/tex] becomes:
[tex]\[ -12 \sqrt{12} = -12 \times 2 \sqrt{3} = -24 \sqrt{3} \][/tex]
- The term [tex]\( -10 \sqrt{12} \)[/tex] becomes:
[tex]\[ -10 \sqrt{12} = -10 \times 2 \sqrt{3} = -20 \sqrt{3} \][/tex]
### 3. Write all the terms in terms of [tex]\(\sqrt{3}\)[/tex]
Collectively, we have:
[tex]\[ -24 \sqrt{3}, \quad -2 \sqrt{3}, \quad -50 \sqrt{3}, \quad -22 \sqrt{3}, \quad -26 \sqrt{3}, \quad -20 \sqrt{3} \][/tex]
### 4. Combine like terms
Sum all the coefficients of [tex]\(\sqrt{3}\)[/tex]:
[tex]\[ -24 - 2 - 50 - 22 - 26 - 20 = -144 \][/tex]
Therefore, the combined radicals are:
[tex]\[ -144 \sqrt{3} \][/tex]
### Conclusion
The combined radical expression is:
[tex]\[ -144 \sqrt{3} \][/tex]
This is the final simplified form of the given radicals when combined.
### 1. Identify and group like terms
First, observe that we have radicals involving [tex]\(\sqrt{3}\)[/tex] and [tex]\(\sqrt{12}\)[/tex]. Notice that [tex]\(\sqrt{12}\)[/tex] can be rewritten as [tex]\(\sqrt{4 \cdot 3} = 2\sqrt{3}\)[/tex]. By doing this, we can transform all terms into expressions involving [tex]\(\sqrt{3}\)[/tex].
### 2. Convert [tex]\(\sqrt{12}\)[/tex] terms to [tex]\(\sqrt{3}\)[/tex]
- The term [tex]\( -12 \sqrt{12} \)[/tex] becomes:
[tex]\[ -12 \sqrt{12} = -12 \times 2 \sqrt{3} = -24 \sqrt{3} \][/tex]
- The term [tex]\( -10 \sqrt{12} \)[/tex] becomes:
[tex]\[ -10 \sqrt{12} = -10 \times 2 \sqrt{3} = -20 \sqrt{3} \][/tex]
### 3. Write all the terms in terms of [tex]\(\sqrt{3}\)[/tex]
Collectively, we have:
[tex]\[ -24 \sqrt{3}, \quad -2 \sqrt{3}, \quad -50 \sqrt{3}, \quad -22 \sqrt{3}, \quad -26 \sqrt{3}, \quad -20 \sqrt{3} \][/tex]
### 4. Combine like terms
Sum all the coefficients of [tex]\(\sqrt{3}\)[/tex]:
[tex]\[ -24 - 2 - 50 - 22 - 26 - 20 = -144 \][/tex]
Therefore, the combined radicals are:
[tex]\[ -144 \sqrt{3} \][/tex]
### Conclusion
The combined radical expression is:
[tex]\[ -144 \sqrt{3} \][/tex]
This is the final simplified form of the given radicals when combined.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.