At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine which function has a domain of all real numbers, let's analyze each of the given functions:
A. [tex]\( y = \cot x \)[/tex] (cotangent):
- The cotangent function is defined as [tex]\( \cot x = \frac{\cos x}{\sin x} \)[/tex].
- This function is undefined when [tex]\( \sin x = 0 \)[/tex], which occurs at [tex]\( x = k\pi \)[/tex] where [tex]\( k \)[/tex] is an integer.
- Thus, [tex]\( \cot x \)[/tex] is not defined for all real numbers because it has discontinuities at these points.
B. [tex]\( y = \sec x \)[/tex] (secant):
- The secant function is defined as [tex]\( \sec x = \frac{1}{\cos x} \)[/tex].
- This function is undefined when [tex]\( \cos x = 0 \)[/tex], which occurs at [tex]\( x = \frac{\pi}{2} + k\pi \)[/tex] where [tex]\( k \)[/tex] is an integer.
- Therefore, [tex]\( \sec x \)[/tex] is not defined for all real numbers due to these points.
C. [tex]\( y = \tan x \)[/tex] (tangent):
- The tangent function is defined as [tex]\( \tan x = \frac{\sin x}{\cos x} \)[/tex].
- This function is undefined when [tex]\( \cos x = 0 \)[/tex], which occurs at [tex]\( x = \frac{\pi}{2} + k\pi \)[/tex] where [tex]\( k \)[/tex] is an integer.
- Thus, [tex]\( \tan x \)[/tex] also has discontinuities and is not defined for all real numbers.
D. [tex]\( y = \sin x \)[/tex] (sine):
- The sine function is defined for all values of [tex]\( x \)[/tex] without any discontinuities.
- There are no points where [tex]\( \sin x \)[/tex] is undefined.
Given these points, the function that has a domain of all real numbers is [tex]\( y = \sin x \)[/tex].
Answer: D. [tex]\( y = \sin x \)[/tex]
A. [tex]\( y = \cot x \)[/tex] (cotangent):
- The cotangent function is defined as [tex]\( \cot x = \frac{\cos x}{\sin x} \)[/tex].
- This function is undefined when [tex]\( \sin x = 0 \)[/tex], which occurs at [tex]\( x = k\pi \)[/tex] where [tex]\( k \)[/tex] is an integer.
- Thus, [tex]\( \cot x \)[/tex] is not defined for all real numbers because it has discontinuities at these points.
B. [tex]\( y = \sec x \)[/tex] (secant):
- The secant function is defined as [tex]\( \sec x = \frac{1}{\cos x} \)[/tex].
- This function is undefined when [tex]\( \cos x = 0 \)[/tex], which occurs at [tex]\( x = \frac{\pi}{2} + k\pi \)[/tex] where [tex]\( k \)[/tex] is an integer.
- Therefore, [tex]\( \sec x \)[/tex] is not defined for all real numbers due to these points.
C. [tex]\( y = \tan x \)[/tex] (tangent):
- The tangent function is defined as [tex]\( \tan x = \frac{\sin x}{\cos x} \)[/tex].
- This function is undefined when [tex]\( \cos x = 0 \)[/tex], which occurs at [tex]\( x = \frac{\pi}{2} + k\pi \)[/tex] where [tex]\( k \)[/tex] is an integer.
- Thus, [tex]\( \tan x \)[/tex] also has discontinuities and is not defined for all real numbers.
D. [tex]\( y = \sin x \)[/tex] (sine):
- The sine function is defined for all values of [tex]\( x \)[/tex] without any discontinuities.
- There are no points where [tex]\( \sin x \)[/tex] is undefined.
Given these points, the function that has a domain of all real numbers is [tex]\( y = \sin x \)[/tex].
Answer: D. [tex]\( y = \sin x \)[/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.