Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine which function has a domain of all real numbers, let's analyze each of the given functions:
A. [tex]\( y = \cot x \)[/tex] (cotangent):
- The cotangent function is defined as [tex]\( \cot x = \frac{\cos x}{\sin x} \)[/tex].
- This function is undefined when [tex]\( \sin x = 0 \)[/tex], which occurs at [tex]\( x = k\pi \)[/tex] where [tex]\( k \)[/tex] is an integer.
- Thus, [tex]\( \cot x \)[/tex] is not defined for all real numbers because it has discontinuities at these points.
B. [tex]\( y = \sec x \)[/tex] (secant):
- The secant function is defined as [tex]\( \sec x = \frac{1}{\cos x} \)[/tex].
- This function is undefined when [tex]\( \cos x = 0 \)[/tex], which occurs at [tex]\( x = \frac{\pi}{2} + k\pi \)[/tex] where [tex]\( k \)[/tex] is an integer.
- Therefore, [tex]\( \sec x \)[/tex] is not defined for all real numbers due to these points.
C. [tex]\( y = \tan x \)[/tex] (tangent):
- The tangent function is defined as [tex]\( \tan x = \frac{\sin x}{\cos x} \)[/tex].
- This function is undefined when [tex]\( \cos x = 0 \)[/tex], which occurs at [tex]\( x = \frac{\pi}{2} + k\pi \)[/tex] where [tex]\( k \)[/tex] is an integer.
- Thus, [tex]\( \tan x \)[/tex] also has discontinuities and is not defined for all real numbers.
D. [tex]\( y = \sin x \)[/tex] (sine):
- The sine function is defined for all values of [tex]\( x \)[/tex] without any discontinuities.
- There are no points where [tex]\( \sin x \)[/tex] is undefined.
Given these points, the function that has a domain of all real numbers is [tex]\( y = \sin x \)[/tex].
Answer: D. [tex]\( y = \sin x \)[/tex]
A. [tex]\( y = \cot x \)[/tex] (cotangent):
- The cotangent function is defined as [tex]\( \cot x = \frac{\cos x}{\sin x} \)[/tex].
- This function is undefined when [tex]\( \sin x = 0 \)[/tex], which occurs at [tex]\( x = k\pi \)[/tex] where [tex]\( k \)[/tex] is an integer.
- Thus, [tex]\( \cot x \)[/tex] is not defined for all real numbers because it has discontinuities at these points.
B. [tex]\( y = \sec x \)[/tex] (secant):
- The secant function is defined as [tex]\( \sec x = \frac{1}{\cos x} \)[/tex].
- This function is undefined when [tex]\( \cos x = 0 \)[/tex], which occurs at [tex]\( x = \frac{\pi}{2} + k\pi \)[/tex] where [tex]\( k \)[/tex] is an integer.
- Therefore, [tex]\( \sec x \)[/tex] is not defined for all real numbers due to these points.
C. [tex]\( y = \tan x \)[/tex] (tangent):
- The tangent function is defined as [tex]\( \tan x = \frac{\sin x}{\cos x} \)[/tex].
- This function is undefined when [tex]\( \cos x = 0 \)[/tex], which occurs at [tex]\( x = \frac{\pi}{2} + k\pi \)[/tex] where [tex]\( k \)[/tex] is an integer.
- Thus, [tex]\( \tan x \)[/tex] also has discontinuities and is not defined for all real numbers.
D. [tex]\( y = \sin x \)[/tex] (sine):
- The sine function is defined for all values of [tex]\( x \)[/tex] without any discontinuities.
- There are no points where [tex]\( \sin x \)[/tex] is undefined.
Given these points, the function that has a domain of all real numbers is [tex]\( y = \sin x \)[/tex].
Answer: D. [tex]\( y = \sin x \)[/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.