At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

Condense the following logarithmic expression:

[tex]\(\ln 6 + 6 \ln z - \ln y\)[/tex]

A. [tex]\(\ln \left(\frac{6 \cdot z^5}{5 \cdot y}\right)\)[/tex]
B. [tex]\(\ln \left(\frac{6 \cdot z^6}{y}\right)\)[/tex]
C. [tex]\(\ln \left(\frac{z^5}{6 \cdot y}\right)\)[/tex]
D. [tex]\(\ln \left(\frac{6 \cdot y^4 \cdot z^6}{y}\right)\)[/tex]


Sagot :

To condense the logarithmic expression [tex]\(\ln 6 + 6 \ln z - \ln y\)[/tex], we will utilize the properties of logarithms. Specifically, we will use the product rule, the power rule, and the quotient rule for logarithms.

### Steps

1. Start with the given expression:
[tex]\[ \ln 6 + 6 \ln z - \ln y \][/tex]

2. Apply the power rule to [tex]\(6 \ln z\)[/tex]:
The power rule states that [tex]\(k \ln a = \ln(a^k)\)[/tex]. Applying this rule to the term [tex]\(6 \ln z\)[/tex] gives:
[tex]\[ 6 \ln z = \ln(z^6) \][/tex]
So the expression now becomes:
[tex]\[ \ln 6 + \ln(z^6) - \ln y \][/tex]

3. Apply the product rule:
The product rule states that [tex]\(\ln a + \ln b = \ln(ab)\)[/tex]. Applying this rule to [tex]\(\ln 6 + \ln(z^6)\)[/tex] gives:
[tex]\[ \ln(6) + \ln(z^6) = \ln(6z^6) \][/tex]
So now the expression is:
[tex]\[ \ln(6z^6) - \ln y \][/tex]

4. Apply the quotient rule:
The quotient rule states that [tex]\(\ln a - \ln b = \ln(\frac{a}{b})\)[/tex]. Applying this rule to [tex]\(\ln(6z^6) - \ln y\)[/tex] gives:
[tex]\[ \ln\left(6z^6\right) - \ln(y) = \ln\left(\frac{6z^6}{y}\right) \][/tex]

Therefore, the condensed logarithmic expression is:
[tex]\[ \boxed{\ln \left(\frac{6 \cdot z^6}{y} \right)} \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.