Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

Which equations represent the line that is perpendicular to the line [tex]\( 5x - 2y = -6 \)[/tex] and passes through the point [tex]\( (5, -4) \)[/tex]? Select three options.

A. [tex]\( y = -\frac{2}{5}x - 2 \)[/tex]
B. [tex]\( 2x + 5y = -10 \)[/tex]
C. [tex]\( 2x - 5y = -10 \)[/tex]
D. [tex]\( y + 4 = \frac{2}{5}(x - 5) \)[/tex]
E. [tex]\( y - 4 = \frac{5}{2}(x + 5) \)[/tex]


Sagot :

To determine which equations represent a line that is perpendicular to the line given by [tex]\( 5x - 2y = -6 \)[/tex] and passes through the point [tex]\( (5, -4) \)[/tex], we need to follow several steps:

1. Find the slope of the given line.

The equation of the line can be written in the form [tex]\( Ax + By = C \)[/tex]. For the given line [tex]\( 5x - 2y = -6 \)[/tex], we have:
- [tex]\( A = 5 \)[/tex]
- [tex]\( B = -2 \)[/tex]

The slope [tex]\( m \)[/tex] of the line is given by:
[tex]\[ m = -\frac{A}{B} = -\frac{5}{-2} = \frac{5}{2} \][/tex]

2. Determine the slope of the perpendicular line.

The slope of a line perpendicular to another line is the negative reciprocal of the original line's slope. Therefore, the slope of the perpendicular line is:
[tex]\[ m_{\text{perpendicular}} = -\frac{1}{\frac{5}{2}} = -\frac{2}{5} \][/tex]

3. Check which of the given equations represent lines with this slope and pass through the point [tex]\( (5, -4) \)[/tex].

- Option 1: [tex]\( y = -\frac{2}{5}x - 2 \)[/tex]
- The slope of this line is [tex]\( -\frac{2}{5} \)[/tex].
- Substitute [tex]\( x = 5 \)[/tex] and [tex]\( y = -4 \)[/tex] to verify if the point lies on the line:
[tex]\[ -4 = -\frac{2}{5}(5) - 2 \quad \Rightarrow \quad -4 = -2 - 2 \quad \Rightarrow \quad -4 = -4 \quad (\text{True}) \][/tex]
- This equation is correct.

- Option 2: [tex]\( 2x + 5y = -10 \)[/tex]
- Convert to slope-intercept form [tex]\( y = mx + b \)[/tex]:
[tex]\[ 5y = -2x - 10 \quad \Rightarrow \quad y = -\frac{2}{5}x - 2 \][/tex]
- The slope of this line is [tex]\( -\frac{2}{5} \)[/tex].
- Substitute [tex]\( x = 5 \)[/tex] and [tex]\( y = -4 \)[/tex] to verify:
[tex]\[ -4 = -\frac{2}{5}(5) - 2 \quad \Rightarrow \quad -4 = -2 - 2 \quad \Rightarrow \quad -4 = -4 \quad (\text{True}) \][/tex]
- This equation is correct.

- Option 3: [tex]\( 2x - 5y = -10 \)[/tex]
- Convert to slope-intercept form:
[tex]\[ -5y = -2x - 10 \quad \Rightarrow \quad y = \frac{2}{5}x + 2 \][/tex]
- The slope of this line is [tex]\( \frac{2}{5} \)[/tex], not [tex]\( -\frac{2}{5} \)[/tex].
- This equation is not correct.

- Option 4: [tex]\( y + 4 = \frac{2}{5}(x - 5) \)[/tex]
- Convert to slope-intercept form:
[tex]\[ y + 4 = \frac{2}{5}x - \frac{2}{5}(5) \quad \Rightarrow \quad y = \frac{2}{5}x - 2 - 4 \quad \Rightarrow \quad y = \frac{2}{5}x - 6 \][/tex]
- The slope of this line is [tex]\( \frac{2}{5} \)[/tex], not [tex]\( -\frac{2}{5} \)[/tex].
- This equation is not correct.

- Option 5: [tex]\( y - 4 = \frac{5}{2}(x + 5) \)[/tex]
- Convert to slope-intercept form:
[tex]\[ y - 4 = \frac{5}{2}x + \frac{5}{2}(5) \quad \Rightarrow \quad y = \frac{5}{2}x + \frac{25}{2} + 4 \quad \Rightarrow \quad y = \frac{5}{2}x + \frac{33}{2} \][/tex]
- The slope of this line is [tex]\( \frac{5}{2} \)[/tex], not [tex]\( -\frac{2}{5} \)[/tex].
- This equation is not correct.

From the calculations, the correct equations representing the line that is perpendicular to [tex]\( 5x - 2y = -6 \)[/tex] and passing through [tex]\( (5, -4) \)[/tex] are:

- [tex]\( y = -\frac{2}{5}x - 2 \)[/tex]
- [tex]\( 2x + 5y = -10 \)[/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.