At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
When analyzing the end behavior of the polynomial function [tex]\( f(x) = -3x^3 - x^2 + 1 \)[/tex], let's focus on the term with the highest power, which is [tex]\( -3x^3 \)[/tex].
For polynomial functions, the highest degree term usually determines the end behavior as [tex]\( x \)[/tex] approaches positive infinity ([tex]\( +\infty \)[/tex]) and negative infinity ([tex]\( -\infty \)[/tex]).
### Step-by-Step Solution:
1. Identify the Highest Degree Term:
- The function [tex]\( f(x) \)[/tex] is [tex]\( -3x^3 - x^2 + 1 \)[/tex].
- The highest degree term is [tex]\( -3x^3 \)[/tex].
2. Analyze the Leading Term:
- The term [tex]\( -3x^3 \)[/tex] has a degree of 3 (cubic term).
- The coefficient is [tex]\( -3 \)[/tex], which is negative.
3. Determine the End Behavior:
- As [tex]\( x \to +\infty \)[/tex]:
- The term [tex]\( -3x^3 \)[/tex] will dominate.
- Since the coefficient is negative, [tex]\( -3x^3 \)[/tex] will tend towards [tex]\( -\infty \)[/tex].
- Therefore, [tex]\( f(x) \)[/tex] will also tend towards [tex]\( -\infty \)[/tex].
- As [tex]\( x \to -\infty \)[/tex]:
- Again, the term [tex]\( -3x^3 \)[/tex] will dominate.
- Because [tex]\( x^3 \)[/tex] with a negative [tex]\( x \)[/tex] (i.e., [tex]\( x^3 \)[/tex] where [tex]\( x \)[/tex] is negative) results in a negative value, and multiplied by [tex]\( -3 \)[/tex] (a negative coefficient), the result will be positive.
- Thus, [tex]\( -3x^3 \)[/tex] will tend towards [tex]\( +\infty \)[/tex], and so will [tex]\( f(x) \)[/tex].
### Conclusion:
The end behavior of the function [tex]\( f(x) = -3x^3 - x^2 + 1 \)[/tex] is:
- As [tex]\( x \to +\infty \)[/tex], [tex]\( f(x) \to -\infty \)[/tex].
- As [tex]\( x \to -\infty \)[/tex], [tex]\( f(x) \to +\infty \)[/tex].
Therefore, any other cubic polynomial function with a negative leading coefficient will exhibit the same end behavior. For example, functions like [tex]\( g(x) = -2x^3 \)[/tex] or [tex]\( h(x) = -5x^3 + 2x \)[/tex] will share the same end behavior as [tex]\( f(x) = -3x^3 - x^2 + 1 \)[/tex].
In summary, the end behavior of [tex]\( f(x) = -3x^3 - x^2 + 1 \)[/tex] shows that as [tex]\( x \rightarrow +\infty \)[/tex], [tex]\( f(x) \rightarrow -\infty \)[/tex] and as [tex]\( x \rightarrow -\infty \)[/tex], [tex]\( f(x) \rightarrow +\infty \)[/tex]. This end behavior corresponds to any cubic function with a negative leading term.
For polynomial functions, the highest degree term usually determines the end behavior as [tex]\( x \)[/tex] approaches positive infinity ([tex]\( +\infty \)[/tex]) and negative infinity ([tex]\( -\infty \)[/tex]).
### Step-by-Step Solution:
1. Identify the Highest Degree Term:
- The function [tex]\( f(x) \)[/tex] is [tex]\( -3x^3 - x^2 + 1 \)[/tex].
- The highest degree term is [tex]\( -3x^3 \)[/tex].
2. Analyze the Leading Term:
- The term [tex]\( -3x^3 \)[/tex] has a degree of 3 (cubic term).
- The coefficient is [tex]\( -3 \)[/tex], which is negative.
3. Determine the End Behavior:
- As [tex]\( x \to +\infty \)[/tex]:
- The term [tex]\( -3x^3 \)[/tex] will dominate.
- Since the coefficient is negative, [tex]\( -3x^3 \)[/tex] will tend towards [tex]\( -\infty \)[/tex].
- Therefore, [tex]\( f(x) \)[/tex] will also tend towards [tex]\( -\infty \)[/tex].
- As [tex]\( x \to -\infty \)[/tex]:
- Again, the term [tex]\( -3x^3 \)[/tex] will dominate.
- Because [tex]\( x^3 \)[/tex] with a negative [tex]\( x \)[/tex] (i.e., [tex]\( x^3 \)[/tex] where [tex]\( x \)[/tex] is negative) results in a negative value, and multiplied by [tex]\( -3 \)[/tex] (a negative coefficient), the result will be positive.
- Thus, [tex]\( -3x^3 \)[/tex] will tend towards [tex]\( +\infty \)[/tex], and so will [tex]\( f(x) \)[/tex].
### Conclusion:
The end behavior of the function [tex]\( f(x) = -3x^3 - x^2 + 1 \)[/tex] is:
- As [tex]\( x \to +\infty \)[/tex], [tex]\( f(x) \to -\infty \)[/tex].
- As [tex]\( x \to -\infty \)[/tex], [tex]\( f(x) \to +\infty \)[/tex].
Therefore, any other cubic polynomial function with a negative leading coefficient will exhibit the same end behavior. For example, functions like [tex]\( g(x) = -2x^3 \)[/tex] or [tex]\( h(x) = -5x^3 + 2x \)[/tex] will share the same end behavior as [tex]\( f(x) = -3x^3 - x^2 + 1 \)[/tex].
In summary, the end behavior of [tex]\( f(x) = -3x^3 - x^2 + 1 \)[/tex] shows that as [tex]\( x \rightarrow +\infty \)[/tex], [tex]\( f(x) \rightarrow -\infty \)[/tex] and as [tex]\( x \rightarrow -\infty \)[/tex], [tex]\( f(x) \rightarrow +\infty \)[/tex]. This end behavior corresponds to any cubic function with a negative leading term.
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.