Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine whether the expression [tex]\(\frac{x^3 - 1}{x^2 - 1}\)[/tex] simplifies to [tex]\(x\)[/tex], let's conduct a step-by-step simplification of the expression.
### Step 1: Factor the Numerator and Denominator
First, we need to factor both the numerator ([tex]\(x^3 - 1\)[/tex]) and the denominator ([tex]\(x^2 - 1\)[/tex]).
Factor the numerator:
The expression [tex]\(x^3 - 1\)[/tex] can be factored using the difference of cubes formula:
[tex]\[ a^3 - b^3 = (a - b)(a^2 + ab + b^2) \][/tex]
In our case, [tex]\(a = x\)[/tex] and [tex]\(b = 1\)[/tex]:
[tex]\[ x^3 - 1 = (x - 1)(x^2 + x + 1) \][/tex]
Factor the denominator:
The expression [tex]\(x^2 - 1\)[/tex] can be factored using the difference of squares formula:
[tex]\[ a^2 - b^2 = (a - b)(a + b) \][/tex]
In our case, [tex]\(a = x\)[/tex] and [tex]\(b = 1\)[/tex]:
[tex]\[ x^2 - 1 = (x - 1)(x + 1) \][/tex]
### Step 2: Rewrite the Expression with Factored Forms
Substitute the factored forms of the numerator and denominator into the original expression:
[tex]\[ \frac{x^3 - 1}{x^2 - 1} = \frac{(x - 1)(x^2 + x + 1)}{(x - 1)(x + 1)} \][/tex]
### Step 3: Simplify the Expression
We can now cancel the common factor [tex]\((x - 1)\)[/tex] in the numerator and the denominator (assuming [tex]\(x \neq 1\)[/tex]):
[tex]\[ \frac{(x - 1)(x^2 + x + 1)}{(x - 1)(x + 1)} = \frac{x^2 + x + 1}{x + 1} \][/tex]
### Step 4: Examine the Simplified Expression
The simplified expression is [tex]\(\frac{x^2 + x + 1}{x + 1}\)[/tex]. It does not simplify further to [tex]\(x\)[/tex].
To determine whether [tex]\(\frac{x^2 + x + 1}{x + 1} = x\)[/tex], you can examine it more closely:
For the expression [tex]\(\frac{x^2 + x + 1}{x + 1}\)[/tex] to equal [tex]\(x\)[/tex]:
[tex]\[ x \neq -1 \][/tex]
both sides of the equation [tex]\(\frac{x^2 + x + 1}{x + 1} = x\)[/tex] should hold:
Set up the equation:
[tex]\[ \frac{x^2 + x + 1}{x + 1} = x \][/tex]
Cross multiply to solve for [tex]\(x\)[/tex]:
[tex]\[ x^2 + x + 1 = x \cdot (x + 1) \][/tex]
[tex]\[ x^2 + x + 1 = x^2 + x \][/tex]
Subtract [tex]\(x^2 + x\)[/tex] from both sides:
[tex]\[ 1 = 0 \][/tex]
### Conclusion
Clearly, the above equation [tex]\(1 = 0\)[/tex] is a contradiction, which means [tex]\(\frac{x^2 + x + 1}{x + 1} \neq x\)[/tex].
So, [tex]\(\frac{x^3 - 1}{x^2 - 1} \neq x\)[/tex].
Therefore, the correct answer is:
No, because the simplified form of the expression [tex]\(\frac{x^3 - 1}{x^2 - 1}\)[/tex] is [tex]\(\frac{x^2 + x + 1}{x + 1}\)[/tex] and it doesn't simplify to [tex]\(x\)[/tex].
### Step 1: Factor the Numerator and Denominator
First, we need to factor both the numerator ([tex]\(x^3 - 1\)[/tex]) and the denominator ([tex]\(x^2 - 1\)[/tex]).
Factor the numerator:
The expression [tex]\(x^3 - 1\)[/tex] can be factored using the difference of cubes formula:
[tex]\[ a^3 - b^3 = (a - b)(a^2 + ab + b^2) \][/tex]
In our case, [tex]\(a = x\)[/tex] and [tex]\(b = 1\)[/tex]:
[tex]\[ x^3 - 1 = (x - 1)(x^2 + x + 1) \][/tex]
Factor the denominator:
The expression [tex]\(x^2 - 1\)[/tex] can be factored using the difference of squares formula:
[tex]\[ a^2 - b^2 = (a - b)(a + b) \][/tex]
In our case, [tex]\(a = x\)[/tex] and [tex]\(b = 1\)[/tex]:
[tex]\[ x^2 - 1 = (x - 1)(x + 1) \][/tex]
### Step 2: Rewrite the Expression with Factored Forms
Substitute the factored forms of the numerator and denominator into the original expression:
[tex]\[ \frac{x^3 - 1}{x^2 - 1} = \frac{(x - 1)(x^2 + x + 1)}{(x - 1)(x + 1)} \][/tex]
### Step 3: Simplify the Expression
We can now cancel the common factor [tex]\((x - 1)\)[/tex] in the numerator and the denominator (assuming [tex]\(x \neq 1\)[/tex]):
[tex]\[ \frac{(x - 1)(x^2 + x + 1)}{(x - 1)(x + 1)} = \frac{x^2 + x + 1}{x + 1} \][/tex]
### Step 4: Examine the Simplified Expression
The simplified expression is [tex]\(\frac{x^2 + x + 1}{x + 1}\)[/tex]. It does not simplify further to [tex]\(x\)[/tex].
To determine whether [tex]\(\frac{x^2 + x + 1}{x + 1} = x\)[/tex], you can examine it more closely:
For the expression [tex]\(\frac{x^2 + x + 1}{x + 1}\)[/tex] to equal [tex]\(x\)[/tex]:
[tex]\[ x \neq -1 \][/tex]
both sides of the equation [tex]\(\frac{x^2 + x + 1}{x + 1} = x\)[/tex] should hold:
Set up the equation:
[tex]\[ \frac{x^2 + x + 1}{x + 1} = x \][/tex]
Cross multiply to solve for [tex]\(x\)[/tex]:
[tex]\[ x^2 + x + 1 = x \cdot (x + 1) \][/tex]
[tex]\[ x^2 + x + 1 = x^2 + x \][/tex]
Subtract [tex]\(x^2 + x\)[/tex] from both sides:
[tex]\[ 1 = 0 \][/tex]
### Conclusion
Clearly, the above equation [tex]\(1 = 0\)[/tex] is a contradiction, which means [tex]\(\frac{x^2 + x + 1}{x + 1} \neq x\)[/tex].
So, [tex]\(\frac{x^3 - 1}{x^2 - 1} \neq x\)[/tex].
Therefore, the correct answer is:
No, because the simplified form of the expression [tex]\(\frac{x^3 - 1}{x^2 - 1}\)[/tex] is [tex]\(\frac{x^2 + x + 1}{x + 1}\)[/tex] and it doesn't simplify to [tex]\(x\)[/tex].
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.