Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To find the difference between the first two terms:
[tex]\[ \frac{x}{x^2 - 16} - \frac{3}{x - 4}, \][/tex]
we'll proceed step-by-step.
### Step 1: Factorize the denominator
Firstly, notice that [tex]\(x^2 - 16\)[/tex] can be factored as:
[tex]\[ x^2 - 16 = (x + 4)(x - 4). \][/tex]
Thus the first term becomes:
[tex]\[ \frac{x}{x^2 - 16} = \frac{x}{(x + 4)(x - 4)}. \][/tex]
### Step 2: Rewrite the second fraction
The second term is:
[tex]\[ \frac{3}{x - 4}. \][/tex]
To combine this with the first term, we'll write it with a common denominator. Since the common denominator is [tex]\( (x + 4)(x - 4) \)[/tex], we rewrite the second term as:
[tex]\[ \frac{3}{x - 4} = \frac{3(x + 4)}{(x + 4)(x - 4)}. \][/tex]
### Step 3: Subtract the fractions
Now we have the two fractions with a common denominator:
[tex]\[ \frac{x}{(x + 4)(x - 4)} - \frac{3(x + 4)}{(x + 4)(x - 4)}. \][/tex]
Combine them into a single fraction:
[tex]\[ \frac{x - 3(x + 4)}{(x + 4)(x - 4)}. \][/tex]
### Step 4: Simplify the numerator
Simplify the numerator by distributing and combining like terms:
[tex]\[ x - 3(x + 4) = x - 3x - 12 = -2x - 12. \][/tex]
### Step 5: Write final expression
The simplified form of the difference is:
[tex]\[ \frac{-2x - 12}{(x + 4)(x - 4)}. \][/tex]
We can also factor out a common factor of [tex]\( -2 \)[/tex] from the numerator:
[tex]\[ \frac{-2(x + 6)}{(x + 4)(x - 4)}. \][/tex]
Thus, the difference,
[tex]\[ \frac{x}{x^2-16} - \frac{3}{x-4} \][/tex]
is:
[tex]\[ \frac{2(-x-6)}{x^2 - 16}. \][/tex]
Hence, the result is:
[tex]\[ \boxed{\frac{2(-x - 6)}{x^2-16}}. \][/tex]
[tex]\[ \frac{x}{x^2 - 16} - \frac{3}{x - 4}, \][/tex]
we'll proceed step-by-step.
### Step 1: Factorize the denominator
Firstly, notice that [tex]\(x^2 - 16\)[/tex] can be factored as:
[tex]\[ x^2 - 16 = (x + 4)(x - 4). \][/tex]
Thus the first term becomes:
[tex]\[ \frac{x}{x^2 - 16} = \frac{x}{(x + 4)(x - 4)}. \][/tex]
### Step 2: Rewrite the second fraction
The second term is:
[tex]\[ \frac{3}{x - 4}. \][/tex]
To combine this with the first term, we'll write it with a common denominator. Since the common denominator is [tex]\( (x + 4)(x - 4) \)[/tex], we rewrite the second term as:
[tex]\[ \frac{3}{x - 4} = \frac{3(x + 4)}{(x + 4)(x - 4)}. \][/tex]
### Step 3: Subtract the fractions
Now we have the two fractions with a common denominator:
[tex]\[ \frac{x}{(x + 4)(x - 4)} - \frac{3(x + 4)}{(x + 4)(x - 4)}. \][/tex]
Combine them into a single fraction:
[tex]\[ \frac{x - 3(x + 4)}{(x + 4)(x - 4)}. \][/tex]
### Step 4: Simplify the numerator
Simplify the numerator by distributing and combining like terms:
[tex]\[ x - 3(x + 4) = x - 3x - 12 = -2x - 12. \][/tex]
### Step 5: Write final expression
The simplified form of the difference is:
[tex]\[ \frac{-2x - 12}{(x + 4)(x - 4)}. \][/tex]
We can also factor out a common factor of [tex]\( -2 \)[/tex] from the numerator:
[tex]\[ \frac{-2(x + 6)}{(x + 4)(x - 4)}. \][/tex]
Thus, the difference,
[tex]\[ \frac{x}{x^2-16} - \frac{3}{x-4} \][/tex]
is:
[tex]\[ \frac{2(-x-6)}{x^2 - 16}. \][/tex]
Hence, the result is:
[tex]\[ \boxed{\frac{2(-x - 6)}{x^2-16}}. \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.