Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To factor the expression [tex]\(50 a^2 b^5 - 35 a^4 b^3 + 5 a^3 b^4\)[/tex] completely, let's follow a step-by-step approach:
1. Identify the Greatest Common Factor (GCF):
We look for the largest factor that is common in each term.
- For the coefficients: the GCF of 50, 35, and 5 is 5.
- For the [tex]\(a\)[/tex] terms: the common factor is [tex]\(a^2\)[/tex].
- For the [tex]\(b\)[/tex] terms: the common factor is [tex]\(b^3\)[/tex].
Therefore, the GCF of the entire expression is [tex]\(5a^2b^3\)[/tex].
2. Factor out the GCF:
Let's factor [tex]\(5a^2b^3\)[/tex] out of each term in the expression:
[tex]\[ 50 a^2 b^5 - 35 a^4 b^3 + 5 a^3 b^4 = 5 a^2 b^3 (10 b^2) - 5 a^2 b^3 (7 a^2) + 5 a^2 b^3 (a b) \][/tex]
3. Simplify inside the parentheses:
After factoring out the GCF [tex]\(5a^2b^3\)[/tex], the expression inside the parentheses simplifies as:
[tex]\[ 50 a^2 b^5 - 35 a^4 b^3 + 5 a^3 b^4 = 5a^2b^3 (10 b^2 - 7 a^2 + ab) \][/tex]
4. Rewrite the final factored form:
Thus, the completely factored form of the expression [tex]\(50 a^2 b^5 - 35 a^4 b^3 + 5 a^3 b^4\)[/tex] is:
[tex]\[ 50 a^2 b^5 - 35 a^4 b^3 + 5 a^3 b^4 = -5 a^2 b^3 (7 a^2 - ab - 10 b^2) \][/tex]
Hence, the completely factored form of the given expression is:
[tex]\[ -5a^2b^3(7a^2 - ab - 10b^2). \][/tex]
1. Identify the Greatest Common Factor (GCF):
We look for the largest factor that is common in each term.
- For the coefficients: the GCF of 50, 35, and 5 is 5.
- For the [tex]\(a\)[/tex] terms: the common factor is [tex]\(a^2\)[/tex].
- For the [tex]\(b\)[/tex] terms: the common factor is [tex]\(b^3\)[/tex].
Therefore, the GCF of the entire expression is [tex]\(5a^2b^3\)[/tex].
2. Factor out the GCF:
Let's factor [tex]\(5a^2b^3\)[/tex] out of each term in the expression:
[tex]\[ 50 a^2 b^5 - 35 a^4 b^3 + 5 a^3 b^4 = 5 a^2 b^3 (10 b^2) - 5 a^2 b^3 (7 a^2) + 5 a^2 b^3 (a b) \][/tex]
3. Simplify inside the parentheses:
After factoring out the GCF [tex]\(5a^2b^3\)[/tex], the expression inside the parentheses simplifies as:
[tex]\[ 50 a^2 b^5 - 35 a^4 b^3 + 5 a^3 b^4 = 5a^2b^3 (10 b^2 - 7 a^2 + ab) \][/tex]
4. Rewrite the final factored form:
Thus, the completely factored form of the expression [tex]\(50 a^2 b^5 - 35 a^4 b^3 + 5 a^3 b^4\)[/tex] is:
[tex]\[ 50 a^2 b^5 - 35 a^4 b^3 + 5 a^3 b^4 = -5 a^2 b^3 (7 a^2 - ab - 10 b^2) \][/tex]
Hence, the completely factored form of the given expression is:
[tex]\[ -5a^2b^3(7a^2 - ab - 10b^2). \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.