Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine which rational function best models the data in the table, we need to compare the fit of two potential models. These models are:
1. [tex]\( y = \frac{x}{96} \)[/tex]
2. [tex]\( y = \frac{2x}{3} \)[/tex]
Given the table of data points:
[tex]\[ \begin{array}{|c|c|} \hline \text{Time, } x \, (\text{hours}) & \text{Average Speed, } y \, (\text{miles per hour}) \\ \hline 12 & 8 \\ \hline 16 & 6 \\ \hline 10 \frac{2}{3} & 9 \\ \hline 18 & 5 \frac{1}{3} \\ \hline \end{array} \][/tex]
Let's check how well each model fits these data points.
### Model [tex]\( y = \frac{x}{96} \)[/tex]
1. For [tex]\( x = 12 \)[/tex]:
[tex]\[ y = \frac{12}{96} = 0.125 \][/tex]
Difference: [tex]\( |8 - 0.125| = 7.875 \)[/tex]
2. For [tex]\( x = 16 \)[/tex]:
[tex]\[ y = \frac{16}{96} \approx 0.1667 \][/tex]
Difference: [tex]\( |6 - 0.1667| \approx 5.8333 \)[/tex]
3. For [tex]\( x = 10.6667 \)[/tex]:
[tex]\[ y = \frac{10.6667}{96} \approx 0.1111 \][/tex]
Difference: [tex]\( |9 - 0.1111| \approx 8.8889 \)[/tex]
4. For [tex]\( x = 18 \)[/tex]:
[tex]\[ y = \frac{18}{96} \approx 0.1875 \][/tex]
Difference: [tex]\( |5.3333 - 0.1875| \approx 5.1458 \)[/tex]
### Model [tex]\( y = \frac{2x}{3} \)[/tex]
1. For [tex]\( x = 12 \)[/tex]:
[tex]\[ y = \frac{2 \times 12}{3} = \frac{24}{3} = 8 \][/tex]
Difference: [tex]\( |8 - 8| = 0 \)[/tex]
2. For [tex]\( x = 16 \)[/tex]:
[tex]\[ y = \frac{2 \times 16}{3} \approx 10.6667 \][/tex]
Difference: [tex]\( |6 - 10.6667| \approx 4.6667 \)[/tex]
3. For [tex]\( x = 10.6667 \)[/tex]:
[tex]\[ y = \frac{2 \times 10.6667}{3} \approx 7.1111 \][/tex]
Difference: [tex]\( |9 - 7.1111| \approx 1.8889 \)[/tex]
4. For [tex]\( x = 18 \)[/tex]:
[tex]\[ y = \frac{2 \times 18}{3} = 12 \][/tex]
Difference: [tex]\( |5.3333 - 12| \approx 6.6667 \)[/tex]
Now, let's compare the differences (errors) for both models:
- Errors for [tex]\( y = \frac{x}{96} \)[/tex]: [tex]\([7.875, 5.8333, 8.8889, 5.1458]\)[/tex]
- Errors for [tex]\( y = \frac{2x}{3} \)[/tex]: [tex]\([0, 4.6667, 1.8889, 6.6667]\)[/tex]
By comparing the magnitude of the errors, we see that the errors for [tex]\( y = \frac{2x}{3} \)[/tex] are generally smaller than those for [tex]\( y = \frac{x}{96} \)[/tex]. Therefore, the model [tex]\( y = \frac{2x}{3} \)[/tex] best fits the given data points in the table.
1. [tex]\( y = \frac{x}{96} \)[/tex]
2. [tex]\( y = \frac{2x}{3} \)[/tex]
Given the table of data points:
[tex]\[ \begin{array}{|c|c|} \hline \text{Time, } x \, (\text{hours}) & \text{Average Speed, } y \, (\text{miles per hour}) \\ \hline 12 & 8 \\ \hline 16 & 6 \\ \hline 10 \frac{2}{3} & 9 \\ \hline 18 & 5 \frac{1}{3} \\ \hline \end{array} \][/tex]
Let's check how well each model fits these data points.
### Model [tex]\( y = \frac{x}{96} \)[/tex]
1. For [tex]\( x = 12 \)[/tex]:
[tex]\[ y = \frac{12}{96} = 0.125 \][/tex]
Difference: [tex]\( |8 - 0.125| = 7.875 \)[/tex]
2. For [tex]\( x = 16 \)[/tex]:
[tex]\[ y = \frac{16}{96} \approx 0.1667 \][/tex]
Difference: [tex]\( |6 - 0.1667| \approx 5.8333 \)[/tex]
3. For [tex]\( x = 10.6667 \)[/tex]:
[tex]\[ y = \frac{10.6667}{96} \approx 0.1111 \][/tex]
Difference: [tex]\( |9 - 0.1111| \approx 8.8889 \)[/tex]
4. For [tex]\( x = 18 \)[/tex]:
[tex]\[ y = \frac{18}{96} \approx 0.1875 \][/tex]
Difference: [tex]\( |5.3333 - 0.1875| \approx 5.1458 \)[/tex]
### Model [tex]\( y = \frac{2x}{3} \)[/tex]
1. For [tex]\( x = 12 \)[/tex]:
[tex]\[ y = \frac{2 \times 12}{3} = \frac{24}{3} = 8 \][/tex]
Difference: [tex]\( |8 - 8| = 0 \)[/tex]
2. For [tex]\( x = 16 \)[/tex]:
[tex]\[ y = \frac{2 \times 16}{3} \approx 10.6667 \][/tex]
Difference: [tex]\( |6 - 10.6667| \approx 4.6667 \)[/tex]
3. For [tex]\( x = 10.6667 \)[/tex]:
[tex]\[ y = \frac{2 \times 10.6667}{3} \approx 7.1111 \][/tex]
Difference: [tex]\( |9 - 7.1111| \approx 1.8889 \)[/tex]
4. For [tex]\( x = 18 \)[/tex]:
[tex]\[ y = \frac{2 \times 18}{3} = 12 \][/tex]
Difference: [tex]\( |5.3333 - 12| \approx 6.6667 \)[/tex]
Now, let's compare the differences (errors) for both models:
- Errors for [tex]\( y = \frac{x}{96} \)[/tex]: [tex]\([7.875, 5.8333, 8.8889, 5.1458]\)[/tex]
- Errors for [tex]\( y = \frac{2x}{3} \)[/tex]: [tex]\([0, 4.6667, 1.8889, 6.6667]\)[/tex]
By comparing the magnitude of the errors, we see that the errors for [tex]\( y = \frac{2x}{3} \)[/tex] are generally smaller than those for [tex]\( y = \frac{x}{96} \)[/tex]. Therefore, the model [tex]\( y = \frac{2x}{3} \)[/tex] best fits the given data points in the table.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.