At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine which rational function best models the data in the table, we need to compare the fit of two potential models. These models are:
1. [tex]\( y = \frac{x}{96} \)[/tex]
2. [tex]\( y = \frac{2x}{3} \)[/tex]
Given the table of data points:
[tex]\[ \begin{array}{|c|c|} \hline \text{Time, } x \, (\text{hours}) & \text{Average Speed, } y \, (\text{miles per hour}) \\ \hline 12 & 8 \\ \hline 16 & 6 \\ \hline 10 \frac{2}{3} & 9 \\ \hline 18 & 5 \frac{1}{3} \\ \hline \end{array} \][/tex]
Let's check how well each model fits these data points.
### Model [tex]\( y = \frac{x}{96} \)[/tex]
1. For [tex]\( x = 12 \)[/tex]:
[tex]\[ y = \frac{12}{96} = 0.125 \][/tex]
Difference: [tex]\( |8 - 0.125| = 7.875 \)[/tex]
2. For [tex]\( x = 16 \)[/tex]:
[tex]\[ y = \frac{16}{96} \approx 0.1667 \][/tex]
Difference: [tex]\( |6 - 0.1667| \approx 5.8333 \)[/tex]
3. For [tex]\( x = 10.6667 \)[/tex]:
[tex]\[ y = \frac{10.6667}{96} \approx 0.1111 \][/tex]
Difference: [tex]\( |9 - 0.1111| \approx 8.8889 \)[/tex]
4. For [tex]\( x = 18 \)[/tex]:
[tex]\[ y = \frac{18}{96} \approx 0.1875 \][/tex]
Difference: [tex]\( |5.3333 - 0.1875| \approx 5.1458 \)[/tex]
### Model [tex]\( y = \frac{2x}{3} \)[/tex]
1. For [tex]\( x = 12 \)[/tex]:
[tex]\[ y = \frac{2 \times 12}{3} = \frac{24}{3} = 8 \][/tex]
Difference: [tex]\( |8 - 8| = 0 \)[/tex]
2. For [tex]\( x = 16 \)[/tex]:
[tex]\[ y = \frac{2 \times 16}{3} \approx 10.6667 \][/tex]
Difference: [tex]\( |6 - 10.6667| \approx 4.6667 \)[/tex]
3. For [tex]\( x = 10.6667 \)[/tex]:
[tex]\[ y = \frac{2 \times 10.6667}{3} \approx 7.1111 \][/tex]
Difference: [tex]\( |9 - 7.1111| \approx 1.8889 \)[/tex]
4. For [tex]\( x = 18 \)[/tex]:
[tex]\[ y = \frac{2 \times 18}{3} = 12 \][/tex]
Difference: [tex]\( |5.3333 - 12| \approx 6.6667 \)[/tex]
Now, let's compare the differences (errors) for both models:
- Errors for [tex]\( y = \frac{x}{96} \)[/tex]: [tex]\([7.875, 5.8333, 8.8889, 5.1458]\)[/tex]
- Errors for [tex]\( y = \frac{2x}{3} \)[/tex]: [tex]\([0, 4.6667, 1.8889, 6.6667]\)[/tex]
By comparing the magnitude of the errors, we see that the errors for [tex]\( y = \frac{2x}{3} \)[/tex] are generally smaller than those for [tex]\( y = \frac{x}{96} \)[/tex]. Therefore, the model [tex]\( y = \frac{2x}{3} \)[/tex] best fits the given data points in the table.
1. [tex]\( y = \frac{x}{96} \)[/tex]
2. [tex]\( y = \frac{2x}{3} \)[/tex]
Given the table of data points:
[tex]\[ \begin{array}{|c|c|} \hline \text{Time, } x \, (\text{hours}) & \text{Average Speed, } y \, (\text{miles per hour}) \\ \hline 12 & 8 \\ \hline 16 & 6 \\ \hline 10 \frac{2}{3} & 9 \\ \hline 18 & 5 \frac{1}{3} \\ \hline \end{array} \][/tex]
Let's check how well each model fits these data points.
### Model [tex]\( y = \frac{x}{96} \)[/tex]
1. For [tex]\( x = 12 \)[/tex]:
[tex]\[ y = \frac{12}{96} = 0.125 \][/tex]
Difference: [tex]\( |8 - 0.125| = 7.875 \)[/tex]
2. For [tex]\( x = 16 \)[/tex]:
[tex]\[ y = \frac{16}{96} \approx 0.1667 \][/tex]
Difference: [tex]\( |6 - 0.1667| \approx 5.8333 \)[/tex]
3. For [tex]\( x = 10.6667 \)[/tex]:
[tex]\[ y = \frac{10.6667}{96} \approx 0.1111 \][/tex]
Difference: [tex]\( |9 - 0.1111| \approx 8.8889 \)[/tex]
4. For [tex]\( x = 18 \)[/tex]:
[tex]\[ y = \frac{18}{96} \approx 0.1875 \][/tex]
Difference: [tex]\( |5.3333 - 0.1875| \approx 5.1458 \)[/tex]
### Model [tex]\( y = \frac{2x}{3} \)[/tex]
1. For [tex]\( x = 12 \)[/tex]:
[tex]\[ y = \frac{2 \times 12}{3} = \frac{24}{3} = 8 \][/tex]
Difference: [tex]\( |8 - 8| = 0 \)[/tex]
2. For [tex]\( x = 16 \)[/tex]:
[tex]\[ y = \frac{2 \times 16}{3} \approx 10.6667 \][/tex]
Difference: [tex]\( |6 - 10.6667| \approx 4.6667 \)[/tex]
3. For [tex]\( x = 10.6667 \)[/tex]:
[tex]\[ y = \frac{2 \times 10.6667}{3} \approx 7.1111 \][/tex]
Difference: [tex]\( |9 - 7.1111| \approx 1.8889 \)[/tex]
4. For [tex]\( x = 18 \)[/tex]:
[tex]\[ y = \frac{2 \times 18}{3} = 12 \][/tex]
Difference: [tex]\( |5.3333 - 12| \approx 6.6667 \)[/tex]
Now, let's compare the differences (errors) for both models:
- Errors for [tex]\( y = \frac{x}{96} \)[/tex]: [tex]\([7.875, 5.8333, 8.8889, 5.1458]\)[/tex]
- Errors for [tex]\( y = \frac{2x}{3} \)[/tex]: [tex]\([0, 4.6667, 1.8889, 6.6667]\)[/tex]
By comparing the magnitude of the errors, we see that the errors for [tex]\( y = \frac{2x}{3} \)[/tex] are generally smaller than those for [tex]\( y = \frac{x}{96} \)[/tex]. Therefore, the model [tex]\( y = \frac{2x}{3} \)[/tex] best fits the given data points in the table.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.