Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

The table below shows [tex]\(y\)[/tex], the average speed of a cyclist in miles per hour, and [tex]\(x\)[/tex], the time in hours the cyclist took to complete a bicycle tour. Which rational function best models the data in the table?

[tex]\[
\begin{tabular}{|c|c|}
\hline
\text{Time, } x \, (\text{hours}) & \text{Average Speed, } y \, (\text{miles per hour}) \\
\hline
12 & 8 \\
\hline
16 & 6 \\
\hline
10 \frac{2}{3} & 9 \\
\hline
18 & 5 \frac{1}{3} \\
\hline
\end{tabular}
\][/tex]

A. [tex]\( y = \frac{x}{96} \)[/tex]

B. [tex]\( y = \frac{2x}{3} \)[/tex]


Sagot :

To determine which rational function best models the data in the table, we need to compare the fit of two potential models. These models are:
1. [tex]\( y = \frac{x}{96} \)[/tex]
2. [tex]\( y = \frac{2x}{3} \)[/tex]

Given the table of data points:
[tex]\[ \begin{array}{|c|c|} \hline \text{Time, } x \, (\text{hours}) & \text{Average Speed, } y \, (\text{miles per hour}) \\ \hline 12 & 8 \\ \hline 16 & 6 \\ \hline 10 \frac{2}{3} & 9 \\ \hline 18 & 5 \frac{1}{3} \\ \hline \end{array} \][/tex]

Let's check how well each model fits these data points.

### Model [tex]\( y = \frac{x}{96} \)[/tex]
1. For [tex]\( x = 12 \)[/tex]:
[tex]\[ y = \frac{12}{96} = 0.125 \][/tex]
Difference: [tex]\( |8 - 0.125| = 7.875 \)[/tex]

2. For [tex]\( x = 16 \)[/tex]:
[tex]\[ y = \frac{16}{96} \approx 0.1667 \][/tex]
Difference: [tex]\( |6 - 0.1667| \approx 5.8333 \)[/tex]

3. For [tex]\( x = 10.6667 \)[/tex]:
[tex]\[ y = \frac{10.6667}{96} \approx 0.1111 \][/tex]
Difference: [tex]\( |9 - 0.1111| \approx 8.8889 \)[/tex]

4. For [tex]\( x = 18 \)[/tex]:
[tex]\[ y = \frac{18}{96} \approx 0.1875 \][/tex]
Difference: [tex]\( |5.3333 - 0.1875| \approx 5.1458 \)[/tex]

### Model [tex]\( y = \frac{2x}{3} \)[/tex]
1. For [tex]\( x = 12 \)[/tex]:
[tex]\[ y = \frac{2 \times 12}{3} = \frac{24}{3} = 8 \][/tex]
Difference: [tex]\( |8 - 8| = 0 \)[/tex]

2. For [tex]\( x = 16 \)[/tex]:
[tex]\[ y = \frac{2 \times 16}{3} \approx 10.6667 \][/tex]
Difference: [tex]\( |6 - 10.6667| \approx 4.6667 \)[/tex]

3. For [tex]\( x = 10.6667 \)[/tex]:
[tex]\[ y = \frac{2 \times 10.6667}{3} \approx 7.1111 \][/tex]
Difference: [tex]\( |9 - 7.1111| \approx 1.8889 \)[/tex]

4. For [tex]\( x = 18 \)[/tex]:
[tex]\[ y = \frac{2 \times 18}{3} = 12 \][/tex]
Difference: [tex]\( |5.3333 - 12| \approx 6.6667 \)[/tex]

Now, let's compare the differences (errors) for both models:

- Errors for [tex]\( y = \frac{x}{96} \)[/tex]: [tex]\([7.875, 5.8333, 8.8889, 5.1458]\)[/tex]
- Errors for [tex]\( y = \frac{2x}{3} \)[/tex]: [tex]\([0, 4.6667, 1.8889, 6.6667]\)[/tex]

By comparing the magnitude of the errors, we see that the errors for [tex]\( y = \frac{2x}{3} \)[/tex] are generally smaller than those for [tex]\( y = \frac{x}{96} \)[/tex]. Therefore, the model [tex]\( y = \frac{2x}{3} \)[/tex] best fits the given data points in the table.