Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To solve the matrix equation
[tex]\[ \begin{bmatrix} 1 & 2 \\ 3 & 7 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 10 \\ 21 \end{bmatrix}, \][/tex]
we need to find the values of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] that satisfy this equation. Here's a step-by-step approach:
1. Write the system of linear equations: The given matrix equation corresponds to the following system of linear equations:
[tex]\[ 1x + 2y = 10 \][/tex]
[tex]\[ 3x + 7y = 21 \][/tex]
2. Solve one of the equations for one variable: Let's solve the first equation for [tex]\(x\)[/tex]:
[tex]\[ x + 2y = 10 \Rightarrow x = 10 - 2y \][/tex]
3. Substitute this expression into the second equation:
[tex]\[ 3(10 - 2y) + 7y = 21 \][/tex]
Simplify this equation:
[tex]\[ 30 - 6y + 7y = 21 \Rightarrow 30 + y = 21 \][/tex]
4. Solve for [tex]\(y\)[/tex]:
[tex]\[ 30 + y = 21 \Rightarrow y = 21 - 30 \Rightarrow y = -9 \][/tex]
5. Substitute [tex]\(y\)[/tex] back into the expression for [tex]\(x\)[/tex]:
[tex]\[ x = 10 - 2y = 10 - 2(-9) = 10 + 18 = 28 \][/tex]
Thus, the solution to the matrix equation is:
[tex]\[ \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 28 \\ -9 \end{bmatrix} \][/tex]
So, the correct choice is [tex]\((28, -9)\)[/tex]. Therefore, the answer is (28, -9).
[tex]\[ \begin{bmatrix} 1 & 2 \\ 3 & 7 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 10 \\ 21 \end{bmatrix}, \][/tex]
we need to find the values of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] that satisfy this equation. Here's a step-by-step approach:
1. Write the system of linear equations: The given matrix equation corresponds to the following system of linear equations:
[tex]\[ 1x + 2y = 10 \][/tex]
[tex]\[ 3x + 7y = 21 \][/tex]
2. Solve one of the equations for one variable: Let's solve the first equation for [tex]\(x\)[/tex]:
[tex]\[ x + 2y = 10 \Rightarrow x = 10 - 2y \][/tex]
3. Substitute this expression into the second equation:
[tex]\[ 3(10 - 2y) + 7y = 21 \][/tex]
Simplify this equation:
[tex]\[ 30 - 6y + 7y = 21 \Rightarrow 30 + y = 21 \][/tex]
4. Solve for [tex]\(y\)[/tex]:
[tex]\[ 30 + y = 21 \Rightarrow y = 21 - 30 \Rightarrow y = -9 \][/tex]
5. Substitute [tex]\(y\)[/tex] back into the expression for [tex]\(x\)[/tex]:
[tex]\[ x = 10 - 2y = 10 - 2(-9) = 10 + 18 = 28 \][/tex]
Thus, the solution to the matrix equation is:
[tex]\[ \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 28 \\ -9 \end{bmatrix} \][/tex]
So, the correct choice is [tex]\((28, -9)\)[/tex]. Therefore, the answer is (28, -9).
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.