At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

Simplify the following expression:

[tex]\[
\frac{7x^4}{\sqrt{2x-8}}
\][/tex]


Sagot :

Sure, let's break down the solution for the expression [tex]\(\frac{7 x^4}{\sqrt{2 x-8}}\)[/tex] step-by-step.

1. Expression Setup:
We are given the mathematical expression:
[tex]\[ \frac{7 x^4}{\sqrt{2 x-8}} \][/tex]

2. Numerator:
The numerator of the expression is [tex]\(7 x^4\)[/tex].

3. Denominator:
The denominator of the expression is [tex]\(\sqrt{2 x-8}\)[/tex].

4. Simplifying the Denominator:
The term inside the square root is [tex]\(2 x - 8\)[/tex]. So the expression under the square root remains [tex]\(2 x - 8\)[/tex].

5. Combining the Parts:
Putting everything together, the expression remains:
[tex]\[ \frac{7 x^4}{\sqrt{2 x - 8}} \][/tex]

Therefore, the expression in its simplest form is:
[tex]\[ \frac{7 x^4}{\sqrt{2 x - 8}} \][/tex]