Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To find the focus and directrix of the given parabola [tex]\((y - 4)^2 = 16(x - 6)\)[/tex], we'll start by identifying key features from the equation. The standard form for a horizontal parabola is [tex]\((y - k)^2 = 4p(x - h)\)[/tex], where:
- [tex]\((h, k)\)[/tex] represents the vertex of the parabola.
- [tex]\(p\)[/tex] is the distance from the vertex to the focus (and also to the directrix).
1. Identify the vertex:
Comparing [tex]\((y - 4)^2 = 16(x - 6)\)[/tex] with the standard form [tex]\((y - k)^2 = 4p(x - h)\)[/tex]:
- [tex]\(h = 6\)[/tex]
- [tex]\(k = 4\)[/tex]
Hence, the vertex of the parabola is [tex]\((6, 4)\)[/tex].
2. Determine [tex]\(p\)[/tex]:
From the equation [tex]\((y - 4)^2 = 16(x - 6)\)[/tex], we can see that [tex]\(4p = 16\)[/tex]. Solving for [tex]\(p\)[/tex]:
[tex]\[ 4p = 16 \implies p = 4 \][/tex]
3. Find the focus:
Since this is a horizontal parabola (opening to the right), the focus will be [tex]\(p\)[/tex] units to the right of the vertex:
- Vertex: [tex]\((6, 4)\)[/tex]
- Focus: [tex]\((6 + 4, 4) = (10, 4)\)[/tex]
4. Find the directrix:
The directrix of a horizontal parabola is a vertical line [tex]\(p\)[/tex] units to the left of the vertex:
- Vertex: [tex]\((6, 4)\)[/tex]
- Directrix: [tex]\(x = 6 - 4 = 2\)[/tex]
Therefore, the focus and directrix of the parabola [tex]\((y - 4)^2 = 16(x - 6)\)[/tex] are:
- Focus: [tex]\((10, 4)\)[/tex]
- Directrix: [tex]\(x = 2\)[/tex]
- [tex]\((h, k)\)[/tex] represents the vertex of the parabola.
- [tex]\(p\)[/tex] is the distance from the vertex to the focus (and also to the directrix).
1. Identify the vertex:
Comparing [tex]\((y - 4)^2 = 16(x - 6)\)[/tex] with the standard form [tex]\((y - k)^2 = 4p(x - h)\)[/tex]:
- [tex]\(h = 6\)[/tex]
- [tex]\(k = 4\)[/tex]
Hence, the vertex of the parabola is [tex]\((6, 4)\)[/tex].
2. Determine [tex]\(p\)[/tex]:
From the equation [tex]\((y - 4)^2 = 16(x - 6)\)[/tex], we can see that [tex]\(4p = 16\)[/tex]. Solving for [tex]\(p\)[/tex]:
[tex]\[ 4p = 16 \implies p = 4 \][/tex]
3. Find the focus:
Since this is a horizontal parabola (opening to the right), the focus will be [tex]\(p\)[/tex] units to the right of the vertex:
- Vertex: [tex]\((6, 4)\)[/tex]
- Focus: [tex]\((6 + 4, 4) = (10, 4)\)[/tex]
4. Find the directrix:
The directrix of a horizontal parabola is a vertical line [tex]\(p\)[/tex] units to the left of the vertex:
- Vertex: [tex]\((6, 4)\)[/tex]
- Directrix: [tex]\(x = 6 - 4 = 2\)[/tex]
Therefore, the focus and directrix of the parabola [tex]\((y - 4)^2 = 16(x - 6)\)[/tex] are:
- Focus: [tex]\((10, 4)\)[/tex]
- Directrix: [tex]\(x = 2\)[/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.