Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

Use the point-slope formula to write an equation of the line that passes through [tex]\((-6,-1)\)[/tex] and [tex]\( (6,1) \)[/tex]. Write the answer in slope-intercept form.

The equation of the line is [tex]\(\square\)[/tex].


Sagot :

Sure, let's go through the steps to find the equation of the line passing through the points [tex]\((-6, -1)\)[/tex] and [tex]\( (6, 1) \)[/tex] using the point-slope formula and then convert it to slope-intercept form.

1. Calculate the Slope:
The slope [tex]\(m\)[/tex] of the line passing through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Given points are [tex]\((x_1, y_1) = (-6, -1)\)[/tex] and [tex]\( (x_2, y_2) = (6, 1) \)[/tex]. Substitute these coordinates into the slope formula:
[tex]\[ m = \frac{1 - (-1)}{6 - (-6)} = \frac{1 + 1}{6 + 6} = \frac{2}{12} = \frac{1}{6} \][/tex]

2. Write the Point-Slope Form:
The point-slope form of a line equation is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Using the point [tex]\((-6, -1)\)[/tex] and the calculated slope [tex]\( m = \frac{1}{6} \)[/tex]:
[tex]\[ y - (-1) = \frac{1}{6}(x - (-6)) \][/tex]
This simplifies to:
[tex]\[ y + 1 = \frac{1}{6}(x + 6) \][/tex]

3. Convert to Slope-Intercept Form:
The slope-intercept form of a line equation is:
[tex]\[ y = mx + b \][/tex]
Given [tex]\( y + 1 = \frac{1}{6}(x + 6) \)[/tex]:
[tex]\[ y + 1 = \frac{1}{6}x + \frac{1}{6} \cdot 6 \][/tex]
Simplify:
[tex]\[ y + 1 = \frac{1}{6}x + 1 \][/tex]
Subtract 1 from both sides to solve for [tex]\( y \)[/tex]:
[tex]\[ y = \frac{1}{6}x + 1 - 1 \][/tex]
[tex]\[ y = \frac{1}{6}x \][/tex]

So, the equation of the line in slope-intercept form is:
[tex]\[ y = \frac{1}{6}x - 1 \][/tex]