Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve the given system of equations:
[tex]\[ \begin{array}{c} 2x + 7y = -1 \\ 4x - 3y = -19 \end{array} \][/tex]
We can use the method of elimination to find the values of [tex]\(x\)[/tex] and [tex]\(y\)[/tex].
Step 1: Align the equations and prepare them for elimination.
[tex]\[ \begin{array}{rl} (1) & 2x + 7y = -1 \\ (2) & 4x - 3y = -19 \end{array} \][/tex]
Step 2: Eliminate one variable.
We will eliminate [tex]\(x\)[/tex] by making the coefficients of [tex]\(x\)[/tex] in both equations equal. To do this, we can multiply equation [tex]\((1)\)[/tex] by 2:
[tex]\[ 4x + 14y = -2 \quad \text{(which is our new equation (3))} \][/tex]
Now, we have:
[tex]\[ \begin{array}{rl} (3) & 4x + 14y = -2 \\ (2) & 4x - 3y = -19 \end{array} \][/tex]
Step 3: Subtract equation (2) from equation (3) to eliminate [tex]\(x\)[/tex]:
[tex]\[ (4x + 14y) - (4x - 3y) = -2 - (-19) \][/tex]
[tex]\[ 4x + 14y - 4x + 3y = -2 + 19 \][/tex]
[tex]\[ 17y = 17 \][/tex]
[tex]\[ y = 1 \][/tex]
Step 4: Substitute [tex]\(y = 1\)[/tex] back into one of the original equations to find [tex]\(x\)[/tex].
We substitute [tex]\(y = 1\)[/tex] into equation (1):
[tex]\[ 2x + 7(1) = -1 \][/tex]
[tex]\[ 2x + 7 = -1 \][/tex]
[tex]\[ 2x = -1 - 7 \][/tex]
[tex]\[ 2x = -8 \][/tex]
[tex]\[ x = -4 \][/tex]
Conclusion:
The solution to the system of equations is [tex]\((-4, 1)\)[/tex].
[tex]\[ \begin{array}{c} 2x + 7y = -1 \\ 4x - 3y = -19 \end{array} \][/tex]
We can use the method of elimination to find the values of [tex]\(x\)[/tex] and [tex]\(y\)[/tex].
Step 1: Align the equations and prepare them for elimination.
[tex]\[ \begin{array}{rl} (1) & 2x + 7y = -1 \\ (2) & 4x - 3y = -19 \end{array} \][/tex]
Step 2: Eliminate one variable.
We will eliminate [tex]\(x\)[/tex] by making the coefficients of [tex]\(x\)[/tex] in both equations equal. To do this, we can multiply equation [tex]\((1)\)[/tex] by 2:
[tex]\[ 4x + 14y = -2 \quad \text{(which is our new equation (3))} \][/tex]
Now, we have:
[tex]\[ \begin{array}{rl} (3) & 4x + 14y = -2 \\ (2) & 4x - 3y = -19 \end{array} \][/tex]
Step 3: Subtract equation (2) from equation (3) to eliminate [tex]\(x\)[/tex]:
[tex]\[ (4x + 14y) - (4x - 3y) = -2 - (-19) \][/tex]
[tex]\[ 4x + 14y - 4x + 3y = -2 + 19 \][/tex]
[tex]\[ 17y = 17 \][/tex]
[tex]\[ y = 1 \][/tex]
Step 4: Substitute [tex]\(y = 1\)[/tex] back into one of the original equations to find [tex]\(x\)[/tex].
We substitute [tex]\(y = 1\)[/tex] into equation (1):
[tex]\[ 2x + 7(1) = -1 \][/tex]
[tex]\[ 2x + 7 = -1 \][/tex]
[tex]\[ 2x = -1 - 7 \][/tex]
[tex]\[ 2x = -8 \][/tex]
[tex]\[ x = -4 \][/tex]
Conclusion:
The solution to the system of equations is [tex]\((-4, 1)\)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.