At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine which statement best describes the function [tex]\( f(x) = -2 \sqrt{x - 7} + 1 \)[/tex], we need to carefully analyze both the domain and the range of [tex]\( f(x) \)[/tex]. Let's go through this step-by-step:
1. Domain of [tex]\( f(x) \)[/tex]:
- The function involves a square root, [tex]\( \sqrt{x - 7} \)[/tex]. The expression inside the square root, [tex]\( x - 7 \)[/tex], must be non-negative because the square root of a negative number is not defined in the set of real numbers.
- Therefore, we need [tex]\( x - 7 \geq 0 \)[/tex], which simplifies to [tex]\( x \geq 7 \)[/tex].
- The domain of [tex]\( f(x) \)[/tex] is [tex]\( [7, \infty) \)[/tex].
Now we check whether [tex]\(-6\)[/tex] is in this domain:
- Clearly, [tex]\(-6 < 7\)[/tex], so [tex]\(-6\)[/tex] is not in the domain of [tex]\( f(x) \)[/tex].
2. Range of [tex]\( f(x) \)[/tex]:
- To find the range, we consider the output values of the function. The square root function [tex]\( \sqrt{x - 7} \)[/tex] yields non-negative values (i.e., [tex]\( \sqrt{x - 7} \geq 0 \)[/tex] for [tex]\( x \geq 7 \)[/tex]).
- Thus, [tex]\( -2 \sqrt{x - 7} \)[/tex] yields non-positive values (i.e., [tex]\( -2 \sqrt{x - 7} \leq 0 \)[/tex]).
- Adding 1 shifts these values, so [tex]\( f(x) = -2 \sqrt{x - 7} + 1 \)[/tex] will yield values that are less than or equal to 1.
- When [tex]\( x = 7 \)[/tex], [tex]\( f(x) = -2 \cdot 0 + 1 = 1 \)[/tex].
- As [tex]\( x \)[/tex] increases indefinitely, [tex]\( \sqrt{x - 7} \)[/tex] becomes larger and larger, making [tex]\( -2 \sqrt{x - 7} \)[/tex] tend towards negative infinity.
- Thus, the range of [tex]\( f(x) \)[/tex] is [tex]\( (-\infty, 1] \)[/tex].
Now we check whether [tex]\(-6\)[/tex] is in this range:
- Since [tex]\(-6 \leq 1\)[/tex], [tex]\(-6\)[/tex] is indeed in the range of [tex]\( f(x) \)[/tex].
3. Conclusion:
- From our analysis, we have determined that [tex]\(-6\)[/tex] is not in the domain of [tex]\( f(x) \)[/tex] but it is in the range of [tex]\( f(x) \)[/tex].
Hence, the statement that best describes the function [tex]\( f(x) = -2 \sqrt{x - 7} + 1 \)[/tex] in relation to [tex]\(-6\)[/tex] is:
- "-6 is not in the domain of [tex]\( f(x) \)[/tex] but is in the range of [tex]\( f(x) \)[/tex]."
1. Domain of [tex]\( f(x) \)[/tex]:
- The function involves a square root, [tex]\( \sqrt{x - 7} \)[/tex]. The expression inside the square root, [tex]\( x - 7 \)[/tex], must be non-negative because the square root of a negative number is not defined in the set of real numbers.
- Therefore, we need [tex]\( x - 7 \geq 0 \)[/tex], which simplifies to [tex]\( x \geq 7 \)[/tex].
- The domain of [tex]\( f(x) \)[/tex] is [tex]\( [7, \infty) \)[/tex].
Now we check whether [tex]\(-6\)[/tex] is in this domain:
- Clearly, [tex]\(-6 < 7\)[/tex], so [tex]\(-6\)[/tex] is not in the domain of [tex]\( f(x) \)[/tex].
2. Range of [tex]\( f(x) \)[/tex]:
- To find the range, we consider the output values of the function. The square root function [tex]\( \sqrt{x - 7} \)[/tex] yields non-negative values (i.e., [tex]\( \sqrt{x - 7} \geq 0 \)[/tex] for [tex]\( x \geq 7 \)[/tex]).
- Thus, [tex]\( -2 \sqrt{x - 7} \)[/tex] yields non-positive values (i.e., [tex]\( -2 \sqrt{x - 7} \leq 0 \)[/tex]).
- Adding 1 shifts these values, so [tex]\( f(x) = -2 \sqrt{x - 7} + 1 \)[/tex] will yield values that are less than or equal to 1.
- When [tex]\( x = 7 \)[/tex], [tex]\( f(x) = -2 \cdot 0 + 1 = 1 \)[/tex].
- As [tex]\( x \)[/tex] increases indefinitely, [tex]\( \sqrt{x - 7} \)[/tex] becomes larger and larger, making [tex]\( -2 \sqrt{x - 7} \)[/tex] tend towards negative infinity.
- Thus, the range of [tex]\( f(x) \)[/tex] is [tex]\( (-\infty, 1] \)[/tex].
Now we check whether [tex]\(-6\)[/tex] is in this range:
- Since [tex]\(-6 \leq 1\)[/tex], [tex]\(-6\)[/tex] is indeed in the range of [tex]\( f(x) \)[/tex].
3. Conclusion:
- From our analysis, we have determined that [tex]\(-6\)[/tex] is not in the domain of [tex]\( f(x) \)[/tex] but it is in the range of [tex]\( f(x) \)[/tex].
Hence, the statement that best describes the function [tex]\( f(x) = -2 \sqrt{x - 7} + 1 \)[/tex] in relation to [tex]\(-6\)[/tex] is:
- "-6 is not in the domain of [tex]\( f(x) \)[/tex] but is in the range of [tex]\( f(x) \)[/tex]."
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.