Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine which table has a constant of proportionality between [tex]\(y\)[/tex] and [tex]\(x\)[/tex] of 10, we need to check whether the ratio [tex]\(\frac{y}{x}\)[/tex] is equal to 10 for every pair of [tex]\( (x, y) \)[/tex] in that table.
Let's examine each table step by step.
### Table A
[tex]\[ \begin{array}{|cc|} \hline x & y \\ \hline 2 & 20 \\ 12 & 132 \\ 22 & 220 \\ \hline \end{array} \][/tex]
Calculate [tex]\(\frac{y}{x}\)[/tex] for each pair:
[tex]\[ \frac{20}{2} = 10 \][/tex]
[tex]\[ \frac{132}{12} = 11 \][/tex]
[tex]\[ \frac{220}{22} = 10 \][/tex]
Since one of the ratios (132/12) is not equal to 10, Table A does not have a constant of proportionality of 10.
### Table B
[tex]\[ \begin{array}{|cc|} \hline x & y \\ \hline 5 & 20 \\ 7 & 30 \\ 10 & 40 \\ \hline \end{array} \][/tex]
Calculate [tex]\(\frac{y}{x}\)[/tex] for each pair:
[tex]\[ \frac{20}{5} = 4 \][/tex]
[tex]\[ \frac{30}{7} \approx 4.2857 \][/tex]
[tex]\[ \frac{40}{10} = 4 \][/tex]
None of the ratios in Table B is equal to 10, so Table B does not have the required constant of proportionality.
### Table C
[tex]\[ \begin{array}{|cc|} \hline x & y \\ \hline 9 & 90 \\ 14 & 140 \\ 24 & 240 \\ \hline \end{array} \][/tex]
Calculate [tex]\(\frac{y}{x}\)[/tex] for each pair:
[tex]\[ \frac{90}{9} = 10 \][/tex]
[tex]\[ \frac{140}{14} = 10 \][/tex]
[tex]\[ \frac{240}{24} = 10 \][/tex]
All the ratios in Table C are equal to 10, so Table C has a constant of proportionality of 10.
Therefore, the correct answer is:
(C)
[tex]\[ \begin{array}{|cc|} \hline x & y \\ \hline 9 & 90 \\ 14 & 140 \\ 24 & 240 \\ \hline \end{array} \][/tex]
Let's examine each table step by step.
### Table A
[tex]\[ \begin{array}{|cc|} \hline x & y \\ \hline 2 & 20 \\ 12 & 132 \\ 22 & 220 \\ \hline \end{array} \][/tex]
Calculate [tex]\(\frac{y}{x}\)[/tex] for each pair:
[tex]\[ \frac{20}{2} = 10 \][/tex]
[tex]\[ \frac{132}{12} = 11 \][/tex]
[tex]\[ \frac{220}{22} = 10 \][/tex]
Since one of the ratios (132/12) is not equal to 10, Table A does not have a constant of proportionality of 10.
### Table B
[tex]\[ \begin{array}{|cc|} \hline x & y \\ \hline 5 & 20 \\ 7 & 30 \\ 10 & 40 \\ \hline \end{array} \][/tex]
Calculate [tex]\(\frac{y}{x}\)[/tex] for each pair:
[tex]\[ \frac{20}{5} = 4 \][/tex]
[tex]\[ \frac{30}{7} \approx 4.2857 \][/tex]
[tex]\[ \frac{40}{10} = 4 \][/tex]
None of the ratios in Table B is equal to 10, so Table B does not have the required constant of proportionality.
### Table C
[tex]\[ \begin{array}{|cc|} \hline x & y \\ \hline 9 & 90 \\ 14 & 140 \\ 24 & 240 \\ \hline \end{array} \][/tex]
Calculate [tex]\(\frac{y}{x}\)[/tex] for each pair:
[tex]\[ \frac{90}{9} = 10 \][/tex]
[tex]\[ \frac{140}{14} = 10 \][/tex]
[tex]\[ \frac{240}{24} = 10 \][/tex]
All the ratios in Table C are equal to 10, so Table C has a constant of proportionality of 10.
Therefore, the correct answer is:
(C)
[tex]\[ \begin{array}{|cc|} \hline x & y \\ \hline 9 & 90 \\ 14 & 140 \\ 24 & 240 \\ \hline \end{array} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.