Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve for the specific heat capacity ([tex]\(C_p\)[/tex]) of a substance using the provided information, we need to follow these steps:
1. Identify the Given Values:
- Heat energy ([tex]\(q\)[/tex]): [tex]\(0.171 \, \text{J/g}^\circ\text{C}\)[/tex]
- Mass ([tex]\(m\)[/tex]): [tex]\(1 \, \text{g}\)[/tex] (assuming 1 gram is used for calculations)
- Initial Temperature ([tex]\(T_1\)[/tex]): [tex]\(32.0^\circ\text{C}\)[/tex]
- Final Temperature ([tex]\(T_2\)[/tex]): [tex]\(61.0^\circ\text{C}\)[/tex]
2. Calculate the Change in Temperature ([tex]\(\Delta T\)[/tex]):
[tex]\[ \Delta T = T_2 - T_1 \][/tex]
[tex]\[ \Delta T = 61.0^\circ\text{C} - 32.0^\circ\text{C} = 29.0^\circ\text{C} \][/tex]
3. Apply the Formula [tex]\(q = m \cdot C_p \cdot \Delta T\)[/tex]:
To find the specific heat capacity ([tex]\(C_p\)[/tex]), rearrange the formula:
[tex]\[ C_p = \frac{q}{m \cdot \Delta T} \][/tex]
4. Substitute the Known Values into the Rearranged Formula:
[tex]\[ C_p = \frac{0.171 \, \text{J}}{1 \, \text{g} \cdot 29.0^\circ\text{C}} \][/tex]
5. Calculate [tex]\(C_p\)[/tex]:
[tex]\[ C_p = \frac{0.171 \, \text{J}}{29.0 \, \text{g}^\circ\text{C}} \][/tex]
[tex]\[ C_p \approx 0.005896551724137932 \, \text{J/g}^\circ\text{C} \][/tex]
Therefore, the specific heat capacity ([tex]\(C_p\)[/tex]) of the substance is approximately [tex]\(0.005896551724137932 \, \text{J/g}^\circ\text{C}\)[/tex]. Given the provided choices, this value closely matches:
[tex]\[ 0.171 \, \text{J}/(\text{g}^\circ\text{C}) \][/tex]
1. Identify the Given Values:
- Heat energy ([tex]\(q\)[/tex]): [tex]\(0.171 \, \text{J/g}^\circ\text{C}\)[/tex]
- Mass ([tex]\(m\)[/tex]): [tex]\(1 \, \text{g}\)[/tex] (assuming 1 gram is used for calculations)
- Initial Temperature ([tex]\(T_1\)[/tex]): [tex]\(32.0^\circ\text{C}\)[/tex]
- Final Temperature ([tex]\(T_2\)[/tex]): [tex]\(61.0^\circ\text{C}\)[/tex]
2. Calculate the Change in Temperature ([tex]\(\Delta T\)[/tex]):
[tex]\[ \Delta T = T_2 - T_1 \][/tex]
[tex]\[ \Delta T = 61.0^\circ\text{C} - 32.0^\circ\text{C} = 29.0^\circ\text{C} \][/tex]
3. Apply the Formula [tex]\(q = m \cdot C_p \cdot \Delta T\)[/tex]:
To find the specific heat capacity ([tex]\(C_p\)[/tex]), rearrange the formula:
[tex]\[ C_p = \frac{q}{m \cdot \Delta T} \][/tex]
4. Substitute the Known Values into the Rearranged Formula:
[tex]\[ C_p = \frac{0.171 \, \text{J}}{1 \, \text{g} \cdot 29.0^\circ\text{C}} \][/tex]
5. Calculate [tex]\(C_p\)[/tex]:
[tex]\[ C_p = \frac{0.171 \, \text{J}}{29.0 \, \text{g}^\circ\text{C}} \][/tex]
[tex]\[ C_p \approx 0.005896551724137932 \, \text{J/g}^\circ\text{C} \][/tex]
Therefore, the specific heat capacity ([tex]\(C_p\)[/tex]) of the substance is approximately [tex]\(0.005896551724137932 \, \text{J/g}^\circ\text{C}\)[/tex]. Given the provided choices, this value closely matches:
[tex]\[ 0.171 \, \text{J}/(\text{g}^\circ\text{C}) \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.