Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Sure, let's solve the problem step-by-step.
Given the function:
[tex]$ f(x) = \frac{7}{x^2 - 49} $[/tex]
### (A) Find all critical numbers of [tex]\( f \)[/tex]
To find the critical numbers, we first need to find the derivative of [tex]\( f(x) \)[/tex], which is [tex]\( f'(x) \)[/tex], and then set it equal to zero or find points where it is undefined.
First, rewrite [tex]\( f(x) \)[/tex]:
[tex]$ f(x) = \frac{7}{(x-7)(x+7)} $[/tex]
Let's find the derivative [tex]\( f'(x) \)[/tex]. Using the quotient rule:
If [tex]\( f(x) = \frac{u(x)}{v(x)} \)[/tex], then [tex]\( f'(x) = \frac{u'v - uv'}{v^2} \)[/tex].
Here, [tex]\( u(x) = 7 \)[/tex] and [tex]\( v(x) = x^2 - 49 \)[/tex], thus:
[tex]\[ u' = 0 \][/tex]
[tex]\[ v' = 2x \][/tex]
Applying the quotient rule:
[tex]\[ f'(x) = \frac{0 \cdot (x^2 - 49) - 7 \cdot 2x}{(x^2 - 49)^2} \][/tex]
[tex]\[ f'(x) = \frac{-14x}{(x^2 - 49)^2} \][/tex]
Set [tex]\( f'(x) = 0 \)[/tex]:
[tex]\[ \frac{-14x}{(x^2 - 49)^2} = 0 \][/tex]
This happens when [tex]\( -14x = 0 \)[/tex], which implies:
[tex]\[ x = 0 \][/tex]
We also need to check where [tex]\( f'(x) \)[/tex] is undefined. Since [tex]\( f'(x) = \frac{-14x}{(x^2 - 49)^2} \)[/tex], it will be undefined where the denominator is zero.
[tex]\[ x^2 - 49 = 0 \][/tex]
[tex]\[ x = \pm 7 \][/tex]
So, the function [tex]\( f(x) \)[/tex] is undefined at [tex]\( x = 7 \)[/tex] and [tex]\( x = -7 \)[/tex].
Hence, the only critical number in the domain of [tex]\( f(x) \)[/tex] is [tex]\( x = 0 \)[/tex].
Critical numbers = [tex]\( 0 \)[/tex]
### (B) Use interval notation to indicate where [tex]\( f(x) \)[/tex] is increasing
We use the first derivative [tex]\( f'(x) = \frac{-14x}{(x^2 - 49)^2} \)[/tex] to determine where the function is increasing or decreasing.
Check the sign of [tex]\( f'(x) \)[/tex] on the intervals created by the critical points and points of discontinuity.
1. Interval [tex]\((- \infty, -7)\)[/tex]:
Pick a test point, say [tex]\( x = -8 \)[/tex]:
[tex]\[ f'(-8) = \frac{-14(-8)}{((-8)^2 - 49)^2} > 0 \][/tex]
2. Interval [tex]\((-7, 0)\)[/tex]:
Pick a test point, say [tex]\( x = -1 \)[/tex]:
[tex]\[ f'(-1) = \frac{-14(-1)}{((-1)^2 - 49)^2} > 0 \][/tex]
3. Interval [tex]\((0, 7)\)[/tex]:
Pick a test point, say [tex]\( x = 1 \)[/tex]:
[tex]\[ f'(1) = \frac{-14(1)}{((1)^2 - 49)^2} < 0 \][/tex]
4. Interval [tex]\((7, \infty)\)[/tex]:
Pick a test point, say [tex]\( x = 8 \)[/tex]:
[tex]\[ f'(8) = \frac{-14(8)}{((8)^2 - 49)^2} < 0 \][/tex]
From the test points:
- [tex]\( f(x) \)[/tex] is increasing on the intervals [tex]\((- \infty, -7) \cup (-7, 0)\)[/tex].
Increasing: [tex]\( (- \infty, -7) U (-7, 0) \)[/tex]
### (C) Use interval notation to indicate where [tex]\( f(x) \)[/tex] is decreasing
From the analysis above:
- [tex]\( f(x) \)[/tex] is decreasing on the intervals [tex]\( (0, 7) \cup (7, \infty) \)[/tex].
Decreasing: [tex]\( (0, 7) U (7, \infty) \)[/tex]
### (D) List the [tex]\( x \)[/tex]-coordinates of all local maxima
A local maximum would occur where [tex]\( f'(x) \)[/tex] changes from positive to negative. From the intervals above and the nature of [tex]\( f'(x) \)[/tex]:
There is no point where [tex]\( f'(x) changes from positive to negative. Local maxima: \( NONE \)[/tex]
### (E) List the [tex]\( x \)[/tex]-coordinates of all local minima
A local minimum would occur where [tex]\( f'(x) \)[/tex] changes from negative to positive.
The only critical point is [tex]\( x = 0 \)[/tex], and we observed:
[tex]\( f'(x) \)[/tex] changes from positive to negative, indicating no local minima at [tex]\( x = 0 \)[/tex].
Local minima: [tex]\( NONE \)[/tex]
Given the function:
[tex]$ f(x) = \frac{7}{x^2 - 49} $[/tex]
### (A) Find all critical numbers of [tex]\( f \)[/tex]
To find the critical numbers, we first need to find the derivative of [tex]\( f(x) \)[/tex], which is [tex]\( f'(x) \)[/tex], and then set it equal to zero or find points where it is undefined.
First, rewrite [tex]\( f(x) \)[/tex]:
[tex]$ f(x) = \frac{7}{(x-7)(x+7)} $[/tex]
Let's find the derivative [tex]\( f'(x) \)[/tex]. Using the quotient rule:
If [tex]\( f(x) = \frac{u(x)}{v(x)} \)[/tex], then [tex]\( f'(x) = \frac{u'v - uv'}{v^2} \)[/tex].
Here, [tex]\( u(x) = 7 \)[/tex] and [tex]\( v(x) = x^2 - 49 \)[/tex], thus:
[tex]\[ u' = 0 \][/tex]
[tex]\[ v' = 2x \][/tex]
Applying the quotient rule:
[tex]\[ f'(x) = \frac{0 \cdot (x^2 - 49) - 7 \cdot 2x}{(x^2 - 49)^2} \][/tex]
[tex]\[ f'(x) = \frac{-14x}{(x^2 - 49)^2} \][/tex]
Set [tex]\( f'(x) = 0 \)[/tex]:
[tex]\[ \frac{-14x}{(x^2 - 49)^2} = 0 \][/tex]
This happens when [tex]\( -14x = 0 \)[/tex], which implies:
[tex]\[ x = 0 \][/tex]
We also need to check where [tex]\( f'(x) \)[/tex] is undefined. Since [tex]\( f'(x) = \frac{-14x}{(x^2 - 49)^2} \)[/tex], it will be undefined where the denominator is zero.
[tex]\[ x^2 - 49 = 0 \][/tex]
[tex]\[ x = \pm 7 \][/tex]
So, the function [tex]\( f(x) \)[/tex] is undefined at [tex]\( x = 7 \)[/tex] and [tex]\( x = -7 \)[/tex].
Hence, the only critical number in the domain of [tex]\( f(x) \)[/tex] is [tex]\( x = 0 \)[/tex].
Critical numbers = [tex]\( 0 \)[/tex]
### (B) Use interval notation to indicate where [tex]\( f(x) \)[/tex] is increasing
We use the first derivative [tex]\( f'(x) = \frac{-14x}{(x^2 - 49)^2} \)[/tex] to determine where the function is increasing or decreasing.
Check the sign of [tex]\( f'(x) \)[/tex] on the intervals created by the critical points and points of discontinuity.
1. Interval [tex]\((- \infty, -7)\)[/tex]:
Pick a test point, say [tex]\( x = -8 \)[/tex]:
[tex]\[ f'(-8) = \frac{-14(-8)}{((-8)^2 - 49)^2} > 0 \][/tex]
2. Interval [tex]\((-7, 0)\)[/tex]:
Pick a test point, say [tex]\( x = -1 \)[/tex]:
[tex]\[ f'(-1) = \frac{-14(-1)}{((-1)^2 - 49)^2} > 0 \][/tex]
3. Interval [tex]\((0, 7)\)[/tex]:
Pick a test point, say [tex]\( x = 1 \)[/tex]:
[tex]\[ f'(1) = \frac{-14(1)}{((1)^2 - 49)^2} < 0 \][/tex]
4. Interval [tex]\((7, \infty)\)[/tex]:
Pick a test point, say [tex]\( x = 8 \)[/tex]:
[tex]\[ f'(8) = \frac{-14(8)}{((8)^2 - 49)^2} < 0 \][/tex]
From the test points:
- [tex]\( f(x) \)[/tex] is increasing on the intervals [tex]\((- \infty, -7) \cup (-7, 0)\)[/tex].
Increasing: [tex]\( (- \infty, -7) U (-7, 0) \)[/tex]
### (C) Use interval notation to indicate where [tex]\( f(x) \)[/tex] is decreasing
From the analysis above:
- [tex]\( f(x) \)[/tex] is decreasing on the intervals [tex]\( (0, 7) \cup (7, \infty) \)[/tex].
Decreasing: [tex]\( (0, 7) U (7, \infty) \)[/tex]
### (D) List the [tex]\( x \)[/tex]-coordinates of all local maxima
A local maximum would occur where [tex]\( f'(x) \)[/tex] changes from positive to negative. From the intervals above and the nature of [tex]\( f'(x) \)[/tex]:
There is no point where [tex]\( f'(x) changes from positive to negative. Local maxima: \( NONE \)[/tex]
### (E) List the [tex]\( x \)[/tex]-coordinates of all local minima
A local minimum would occur where [tex]\( f'(x) \)[/tex] changes from negative to positive.
The only critical point is [tex]\( x = 0 \)[/tex], and we observed:
[tex]\( f'(x) \)[/tex] changes from positive to negative, indicating no local minima at [tex]\( x = 0 \)[/tex].
Local minima: [tex]\( NONE \)[/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.