Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Sure, let's solve the problem step-by-step.
Given the function:
[tex]$ f(x) = \frac{7}{x^2 - 49} $[/tex]
### (A) Find all critical numbers of [tex]\( f \)[/tex]
To find the critical numbers, we first need to find the derivative of [tex]\( f(x) \)[/tex], which is [tex]\( f'(x) \)[/tex], and then set it equal to zero or find points where it is undefined.
First, rewrite [tex]\( f(x) \)[/tex]:
[tex]$ f(x) = \frac{7}{(x-7)(x+7)} $[/tex]
Let's find the derivative [tex]\( f'(x) \)[/tex]. Using the quotient rule:
If [tex]\( f(x) = \frac{u(x)}{v(x)} \)[/tex], then [tex]\( f'(x) = \frac{u'v - uv'}{v^2} \)[/tex].
Here, [tex]\( u(x) = 7 \)[/tex] and [tex]\( v(x) = x^2 - 49 \)[/tex], thus:
[tex]\[ u' = 0 \][/tex]
[tex]\[ v' = 2x \][/tex]
Applying the quotient rule:
[tex]\[ f'(x) = \frac{0 \cdot (x^2 - 49) - 7 \cdot 2x}{(x^2 - 49)^2} \][/tex]
[tex]\[ f'(x) = \frac{-14x}{(x^2 - 49)^2} \][/tex]
Set [tex]\( f'(x) = 0 \)[/tex]:
[tex]\[ \frac{-14x}{(x^2 - 49)^2} = 0 \][/tex]
This happens when [tex]\( -14x = 0 \)[/tex], which implies:
[tex]\[ x = 0 \][/tex]
We also need to check where [tex]\( f'(x) \)[/tex] is undefined. Since [tex]\( f'(x) = \frac{-14x}{(x^2 - 49)^2} \)[/tex], it will be undefined where the denominator is zero.
[tex]\[ x^2 - 49 = 0 \][/tex]
[tex]\[ x = \pm 7 \][/tex]
So, the function [tex]\( f(x) \)[/tex] is undefined at [tex]\( x = 7 \)[/tex] and [tex]\( x = -7 \)[/tex].
Hence, the only critical number in the domain of [tex]\( f(x) \)[/tex] is [tex]\( x = 0 \)[/tex].
Critical numbers = [tex]\( 0 \)[/tex]
### (B) Use interval notation to indicate where [tex]\( f(x) \)[/tex] is increasing
We use the first derivative [tex]\( f'(x) = \frac{-14x}{(x^2 - 49)^2} \)[/tex] to determine where the function is increasing or decreasing.
Check the sign of [tex]\( f'(x) \)[/tex] on the intervals created by the critical points and points of discontinuity.
1. Interval [tex]\((- \infty, -7)\)[/tex]:
Pick a test point, say [tex]\( x = -8 \)[/tex]:
[tex]\[ f'(-8) = \frac{-14(-8)}{((-8)^2 - 49)^2} > 0 \][/tex]
2. Interval [tex]\((-7, 0)\)[/tex]:
Pick a test point, say [tex]\( x = -1 \)[/tex]:
[tex]\[ f'(-1) = \frac{-14(-1)}{((-1)^2 - 49)^2} > 0 \][/tex]
3. Interval [tex]\((0, 7)\)[/tex]:
Pick a test point, say [tex]\( x = 1 \)[/tex]:
[tex]\[ f'(1) = \frac{-14(1)}{((1)^2 - 49)^2} < 0 \][/tex]
4. Interval [tex]\((7, \infty)\)[/tex]:
Pick a test point, say [tex]\( x = 8 \)[/tex]:
[tex]\[ f'(8) = \frac{-14(8)}{((8)^2 - 49)^2} < 0 \][/tex]
From the test points:
- [tex]\( f(x) \)[/tex] is increasing on the intervals [tex]\((- \infty, -7) \cup (-7, 0)\)[/tex].
Increasing: [tex]\( (- \infty, -7) U (-7, 0) \)[/tex]
### (C) Use interval notation to indicate where [tex]\( f(x) \)[/tex] is decreasing
From the analysis above:
- [tex]\( f(x) \)[/tex] is decreasing on the intervals [tex]\( (0, 7) \cup (7, \infty) \)[/tex].
Decreasing: [tex]\( (0, 7) U (7, \infty) \)[/tex]
### (D) List the [tex]\( x \)[/tex]-coordinates of all local maxima
A local maximum would occur where [tex]\( f'(x) \)[/tex] changes from positive to negative. From the intervals above and the nature of [tex]\( f'(x) \)[/tex]:
There is no point where [tex]\( f'(x) changes from positive to negative. Local maxima: \( NONE \)[/tex]
### (E) List the [tex]\( x \)[/tex]-coordinates of all local minima
A local minimum would occur where [tex]\( f'(x) \)[/tex] changes from negative to positive.
The only critical point is [tex]\( x = 0 \)[/tex], and we observed:
[tex]\( f'(x) \)[/tex] changes from positive to negative, indicating no local minima at [tex]\( x = 0 \)[/tex].
Local minima: [tex]\( NONE \)[/tex]
Given the function:
[tex]$ f(x) = \frac{7}{x^2 - 49} $[/tex]
### (A) Find all critical numbers of [tex]\( f \)[/tex]
To find the critical numbers, we first need to find the derivative of [tex]\( f(x) \)[/tex], which is [tex]\( f'(x) \)[/tex], and then set it equal to zero or find points where it is undefined.
First, rewrite [tex]\( f(x) \)[/tex]:
[tex]$ f(x) = \frac{7}{(x-7)(x+7)} $[/tex]
Let's find the derivative [tex]\( f'(x) \)[/tex]. Using the quotient rule:
If [tex]\( f(x) = \frac{u(x)}{v(x)} \)[/tex], then [tex]\( f'(x) = \frac{u'v - uv'}{v^2} \)[/tex].
Here, [tex]\( u(x) = 7 \)[/tex] and [tex]\( v(x) = x^2 - 49 \)[/tex], thus:
[tex]\[ u' = 0 \][/tex]
[tex]\[ v' = 2x \][/tex]
Applying the quotient rule:
[tex]\[ f'(x) = \frac{0 \cdot (x^2 - 49) - 7 \cdot 2x}{(x^2 - 49)^2} \][/tex]
[tex]\[ f'(x) = \frac{-14x}{(x^2 - 49)^2} \][/tex]
Set [tex]\( f'(x) = 0 \)[/tex]:
[tex]\[ \frac{-14x}{(x^2 - 49)^2} = 0 \][/tex]
This happens when [tex]\( -14x = 0 \)[/tex], which implies:
[tex]\[ x = 0 \][/tex]
We also need to check where [tex]\( f'(x) \)[/tex] is undefined. Since [tex]\( f'(x) = \frac{-14x}{(x^2 - 49)^2} \)[/tex], it will be undefined where the denominator is zero.
[tex]\[ x^2 - 49 = 0 \][/tex]
[tex]\[ x = \pm 7 \][/tex]
So, the function [tex]\( f(x) \)[/tex] is undefined at [tex]\( x = 7 \)[/tex] and [tex]\( x = -7 \)[/tex].
Hence, the only critical number in the domain of [tex]\( f(x) \)[/tex] is [tex]\( x = 0 \)[/tex].
Critical numbers = [tex]\( 0 \)[/tex]
### (B) Use interval notation to indicate where [tex]\( f(x) \)[/tex] is increasing
We use the first derivative [tex]\( f'(x) = \frac{-14x}{(x^2 - 49)^2} \)[/tex] to determine where the function is increasing or decreasing.
Check the sign of [tex]\( f'(x) \)[/tex] on the intervals created by the critical points and points of discontinuity.
1. Interval [tex]\((- \infty, -7)\)[/tex]:
Pick a test point, say [tex]\( x = -8 \)[/tex]:
[tex]\[ f'(-8) = \frac{-14(-8)}{((-8)^2 - 49)^2} > 0 \][/tex]
2. Interval [tex]\((-7, 0)\)[/tex]:
Pick a test point, say [tex]\( x = -1 \)[/tex]:
[tex]\[ f'(-1) = \frac{-14(-1)}{((-1)^2 - 49)^2} > 0 \][/tex]
3. Interval [tex]\((0, 7)\)[/tex]:
Pick a test point, say [tex]\( x = 1 \)[/tex]:
[tex]\[ f'(1) = \frac{-14(1)}{((1)^2 - 49)^2} < 0 \][/tex]
4. Interval [tex]\((7, \infty)\)[/tex]:
Pick a test point, say [tex]\( x = 8 \)[/tex]:
[tex]\[ f'(8) = \frac{-14(8)}{((8)^2 - 49)^2} < 0 \][/tex]
From the test points:
- [tex]\( f(x) \)[/tex] is increasing on the intervals [tex]\((- \infty, -7) \cup (-7, 0)\)[/tex].
Increasing: [tex]\( (- \infty, -7) U (-7, 0) \)[/tex]
### (C) Use interval notation to indicate where [tex]\( f(x) \)[/tex] is decreasing
From the analysis above:
- [tex]\( f(x) \)[/tex] is decreasing on the intervals [tex]\( (0, 7) \cup (7, \infty) \)[/tex].
Decreasing: [tex]\( (0, 7) U (7, \infty) \)[/tex]
### (D) List the [tex]\( x \)[/tex]-coordinates of all local maxima
A local maximum would occur where [tex]\( f'(x) \)[/tex] changes from positive to negative. From the intervals above and the nature of [tex]\( f'(x) \)[/tex]:
There is no point where [tex]\( f'(x) changes from positive to negative. Local maxima: \( NONE \)[/tex]
### (E) List the [tex]\( x \)[/tex]-coordinates of all local minima
A local minimum would occur where [tex]\( f'(x) \)[/tex] changes from negative to positive.
The only critical point is [tex]\( x = 0 \)[/tex], and we observed:
[tex]\( f'(x) \)[/tex] changes from positive to negative, indicating no local minima at [tex]\( x = 0 \)[/tex].
Local minima: [tex]\( NONE \)[/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.