Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve the problem, we need to understand the relationship between the time [tex]\( t \)[/tex], the distance [tex]\( d \)[/tex], and the speed [tex]\( m \)[/tex]. The problem states that the time [tex]\( t \)[/tex] it takes to complete the distance varies inversely with the speed [tex]\( m \)[/tex]. This means that as the speed increases, the time decreases, and vice versa.
The inverse relationship between time and speed can be expressed mathematically as:
[tex]\[ t \propto \frac{1}{m} \][/tex]
This means:
[tex]\[ t = \frac{k}{m} \][/tex]
where [tex]\( k \)[/tex] is a constant.
Next, we need to determine the value of the constant [tex]\( k \)[/tex]. The problem specifies that the distance Kevin cycles is 18 miles. When dealing with distance, speed, and time, we have the relationship:
[tex]\[ \text{distance} = \text{speed} \times \text{time} \][/tex]
In this case:
[tex]\[ d = m \times t \][/tex]
We know the distance [tex]\( d \)[/tex] is 18 miles:
[tex]\[ 18 = m \times t \][/tex]
To find the equation that represents the time [tex]\( t \)[/tex], we can solve for [tex]\( t \)[/tex]:
[tex]\[ t = \frac{18}{m} \][/tex]
Thus, the equation that best models the amount of time [tex]\( t \)[/tex] it takes Kevin to finish cycling if he rides at a speed of [tex]\( m \)[/tex] miles per hour is:
[tex]\[ t = \frac{18}{m} \][/tex]
Therefore, the correct choice is:
A. [tex]\( t=\frac{18}{m} \)[/tex]
The inverse relationship between time and speed can be expressed mathematically as:
[tex]\[ t \propto \frac{1}{m} \][/tex]
This means:
[tex]\[ t = \frac{k}{m} \][/tex]
where [tex]\( k \)[/tex] is a constant.
Next, we need to determine the value of the constant [tex]\( k \)[/tex]. The problem specifies that the distance Kevin cycles is 18 miles. When dealing with distance, speed, and time, we have the relationship:
[tex]\[ \text{distance} = \text{speed} \times \text{time} \][/tex]
In this case:
[tex]\[ d = m \times t \][/tex]
We know the distance [tex]\( d \)[/tex] is 18 miles:
[tex]\[ 18 = m \times t \][/tex]
To find the equation that represents the time [tex]\( t \)[/tex], we can solve for [tex]\( t \)[/tex]:
[tex]\[ t = \frac{18}{m} \][/tex]
Thus, the equation that best models the amount of time [tex]\( t \)[/tex] it takes Kevin to finish cycling if he rides at a speed of [tex]\( m \)[/tex] miles per hour is:
[tex]\[ t = \frac{18}{m} \][/tex]
Therefore, the correct choice is:
A. [tex]\( t=\frac{18}{m} \)[/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.