Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To find the maximum value of [tex]\( P = 3x + 2y \)[/tex] given the constraints:
[tex]\[ \begin{cases} x + 3y \leq 15 \\ 4x + y \leq 16 \\ x \geq 0 \\ y \geq 0 \end{cases} \][/tex]
we should approach it step-by-step by using graphical or algebraic methods. Here, we will consider the points where the constraints intersect and evaluate [tex]\( P \)[/tex] at these points. These intersection points occur at the boundaries of the feasible region defined by the constraints.
### Finding Intersection Points
1. Intersection of [tex]\( x + 3y = 15 \)[/tex] and [tex]\( 4x + y = 16 \)[/tex]:
To find this intersection, solve the system of linear equations:
[tex]\[ \begin{cases} x + 3y = 15 \\ 4x + y = 16 \end{cases} \][/tex]
Multiply the second equation by 3 to align the [tex]\( y \)[/tex]-terms:
[tex]\[ 4x + y = 16 \implies 12x + 3y = 48 \][/tex]
Now, subtract the first equation from this result:
[tex]\[ 12x + 3y - (x + 3y) = 48 - 15 \\ 11x = 33 \\ x = 3 \][/tex]
Substitute [tex]\( x = 3 \)[/tex] back into [tex]\( x + 3y = 15 \)[/tex]:
[tex]\[ 3 + 3y = 15 \\ 3y = 12 \\ y = 4 \][/tex]
So, the intersection point here is [tex]\( (3, 4) \)[/tex].
2. Intersection with Axes:
- For [tex]\( x + 3y = 15 \)[/tex] when [tex]\( x = 0 \)[/tex]:
[tex]\[ 3y = 15 \\ y = 5 \][/tex]
Hence, point [tex]\( (0, 5) \)[/tex].
- For [tex]\( x + 3y = 15 \)[/tex] when [tex]\( y = 0 \)[/tex]:
[tex]\[ x = 15 \][/tex]
Hence, point [tex]\( (15, 0) \)[/tex].
- For [tex]\( 4x + y = 16 \)[/tex] when [tex]\( x = 0 \)[/tex]:
[tex]\[ y = 16 \][/tex]
Hence, point [tex]\( (0, 16) \)[/tex].
- For [tex]\( 4x + y = 16 \)[/tex] when [tex]\( y = 0 \)[/tex]:
[tex]\[ 4x = 16 \\ x = 4 \][/tex]
Hence, point [tex]\( (4, 0) \)[/tex].
### Evaluating [tex]\( P \)[/tex] at the Intersection Points
Let's evaluate [tex]\( P = 3x + 2y \)[/tex] at each significant point within the constraints:
- At [tex]\( (0, 5) \)[/tex], [tex]\( P = 3(0) + 2(5) = 10 \)[/tex]
- At [tex]\( (3, 4) \)[/tex], [tex]\( P = 3(3) + 2(4) = 9 + 8 = 17 \)[/tex]
- At [tex]\( (4, 0) \)[/tex], [tex]\( P = 3(4) + 2(0) = 12 \)[/tex]
### Conclusion
In conclusion, the maximum value of [tex]\( P \)[/tex] given the constraints is:
[tex]\[ P = 3(3) + 2(4) = 9 + 8 = 17 \][/tex]
So, the maximum value of [tex]\( P \)[/tex] is [tex]\( 17 \)[/tex]. This maximum occurs at the point [tex]\( (3, 4) \)[/tex].
[tex]\[ \begin{cases} x + 3y \leq 15 \\ 4x + y \leq 16 \\ x \geq 0 \\ y \geq 0 \end{cases} \][/tex]
we should approach it step-by-step by using graphical or algebraic methods. Here, we will consider the points where the constraints intersect and evaluate [tex]\( P \)[/tex] at these points. These intersection points occur at the boundaries of the feasible region defined by the constraints.
### Finding Intersection Points
1. Intersection of [tex]\( x + 3y = 15 \)[/tex] and [tex]\( 4x + y = 16 \)[/tex]:
To find this intersection, solve the system of linear equations:
[tex]\[ \begin{cases} x + 3y = 15 \\ 4x + y = 16 \end{cases} \][/tex]
Multiply the second equation by 3 to align the [tex]\( y \)[/tex]-terms:
[tex]\[ 4x + y = 16 \implies 12x + 3y = 48 \][/tex]
Now, subtract the first equation from this result:
[tex]\[ 12x + 3y - (x + 3y) = 48 - 15 \\ 11x = 33 \\ x = 3 \][/tex]
Substitute [tex]\( x = 3 \)[/tex] back into [tex]\( x + 3y = 15 \)[/tex]:
[tex]\[ 3 + 3y = 15 \\ 3y = 12 \\ y = 4 \][/tex]
So, the intersection point here is [tex]\( (3, 4) \)[/tex].
2. Intersection with Axes:
- For [tex]\( x + 3y = 15 \)[/tex] when [tex]\( x = 0 \)[/tex]:
[tex]\[ 3y = 15 \\ y = 5 \][/tex]
Hence, point [tex]\( (0, 5) \)[/tex].
- For [tex]\( x + 3y = 15 \)[/tex] when [tex]\( y = 0 \)[/tex]:
[tex]\[ x = 15 \][/tex]
Hence, point [tex]\( (15, 0) \)[/tex].
- For [tex]\( 4x + y = 16 \)[/tex] when [tex]\( x = 0 \)[/tex]:
[tex]\[ y = 16 \][/tex]
Hence, point [tex]\( (0, 16) \)[/tex].
- For [tex]\( 4x + y = 16 \)[/tex] when [tex]\( y = 0 \)[/tex]:
[tex]\[ 4x = 16 \\ x = 4 \][/tex]
Hence, point [tex]\( (4, 0) \)[/tex].
### Evaluating [tex]\( P \)[/tex] at the Intersection Points
Let's evaluate [tex]\( P = 3x + 2y \)[/tex] at each significant point within the constraints:
- At [tex]\( (0, 5) \)[/tex], [tex]\( P = 3(0) + 2(5) = 10 \)[/tex]
- At [tex]\( (3, 4) \)[/tex], [tex]\( P = 3(3) + 2(4) = 9 + 8 = 17 \)[/tex]
- At [tex]\( (4, 0) \)[/tex], [tex]\( P = 3(4) + 2(0) = 12 \)[/tex]
### Conclusion
In conclusion, the maximum value of [tex]\( P \)[/tex] given the constraints is:
[tex]\[ P = 3(3) + 2(4) = 9 + 8 = 17 \][/tex]
So, the maximum value of [tex]\( P \)[/tex] is [tex]\( 17 \)[/tex]. This maximum occurs at the point [tex]\( (3, 4) \)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.