Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Let's factor each given expression step by step.
1. Factor the expression [tex]\( 16x^2 - 8x + 1 \)[/tex]:
To factor this quadratic expression, we first look for two numbers that multiply to [tex]\(16 \cdot 1 = 16\)[/tex] and add to [tex]\(-8\)[/tex]. Since this expression is a perfect square trinomial, it can be factored as:
[tex]\[ (4x - 1)^2 \][/tex]
Therefore,
[tex]\[ 16x^2 - 8x + 1 = (4x - 1)^2 \][/tex]
2. Factor the expression [tex]\( x^2 - x - 30 \)[/tex]:
To factor this quadratic expression, we need to find two numbers that multiply to [tex]\(-30\)[/tex] and add to [tex]\(-1\)[/tex]. The numbers [tex]\(-6\)[/tex] and [tex]\(5\)[/tex] fit these criteria. Hence, we can factor as:
[tex]\[ (x - 6)(x + 5) \][/tex]
Therefore,
[tex]\[ x^2 - x - 30 = (x - 6)(x + 5) \][/tex]
3. Factor the expression [tex]\( 9x^2 - 49 \)[/tex]:
This is a difference of squares. We can write:
[tex]\[ 9x^2 - 49 = (3x)^2 - 7^2 \][/tex]
Therefore, using the difference of squares formula, we have:
[tex]\[ 9x^2 - 49 = (3x - 7)(3x + 7) \][/tex]
4. Factor the expression [tex]\( 3x^2 + 17x - 6 \)[/tex]:
We need to find two numbers that multiply to [tex]\(3 \cdot -6 = -18\)[/tex] and add to [tex]\(17\)[/tex]. The pair [tex]\(18\)[/tex] and [tex]\(-1\)[/tex] fit this condition. We can rewrite the middle term using these numbers:
[tex]\[ 3x^2 + 18x - x - 6 \][/tex]
Now, factor by grouping:
[tex]\[ 3x(x + 6) - 1(x + 6) \][/tex]
Factor out the common factor [tex]\((x + 6)\)[/tex]:
[tex]\[ (x + 6)(3x - 1) \][/tex]
Therefore,
[tex]\[ 3x^2 + 17x - 6 = (x + 6)(3x - 1) \][/tex]
Putting it all together, we have the factored forms of each expression. Thus:
[tex]\[ \begin{array}{ll} 16 x^2-8 x+1 & = (4x - 1)^2 \\ x^2-x-30 & = (x - 6)(x + 5) \\ 9 x^2-49 & = (3x - 7)(3x + 7) \\ 3 x^2+17 x-6 & = (x + 6)(3x - 1) \\ \end{array} \][/tex]
1. Factor the expression [tex]\( 16x^2 - 8x + 1 \)[/tex]:
To factor this quadratic expression, we first look for two numbers that multiply to [tex]\(16 \cdot 1 = 16\)[/tex] and add to [tex]\(-8\)[/tex]. Since this expression is a perfect square trinomial, it can be factored as:
[tex]\[ (4x - 1)^2 \][/tex]
Therefore,
[tex]\[ 16x^2 - 8x + 1 = (4x - 1)^2 \][/tex]
2. Factor the expression [tex]\( x^2 - x - 30 \)[/tex]:
To factor this quadratic expression, we need to find two numbers that multiply to [tex]\(-30\)[/tex] and add to [tex]\(-1\)[/tex]. The numbers [tex]\(-6\)[/tex] and [tex]\(5\)[/tex] fit these criteria. Hence, we can factor as:
[tex]\[ (x - 6)(x + 5) \][/tex]
Therefore,
[tex]\[ x^2 - x - 30 = (x - 6)(x + 5) \][/tex]
3. Factor the expression [tex]\( 9x^2 - 49 \)[/tex]:
This is a difference of squares. We can write:
[tex]\[ 9x^2 - 49 = (3x)^2 - 7^2 \][/tex]
Therefore, using the difference of squares formula, we have:
[tex]\[ 9x^2 - 49 = (3x - 7)(3x + 7) \][/tex]
4. Factor the expression [tex]\( 3x^2 + 17x - 6 \)[/tex]:
We need to find two numbers that multiply to [tex]\(3 \cdot -6 = -18\)[/tex] and add to [tex]\(17\)[/tex]. The pair [tex]\(18\)[/tex] and [tex]\(-1\)[/tex] fit this condition. We can rewrite the middle term using these numbers:
[tex]\[ 3x^2 + 18x - x - 6 \][/tex]
Now, factor by grouping:
[tex]\[ 3x(x + 6) - 1(x + 6) \][/tex]
Factor out the common factor [tex]\((x + 6)\)[/tex]:
[tex]\[ (x + 6)(3x - 1) \][/tex]
Therefore,
[tex]\[ 3x^2 + 17x - 6 = (x + 6)(3x - 1) \][/tex]
Putting it all together, we have the factored forms of each expression. Thus:
[tex]\[ \begin{array}{ll} 16 x^2-8 x+1 & = (4x - 1)^2 \\ x^2-x-30 & = (x - 6)(x + 5) \\ 9 x^2-49 & = (3x - 7)(3x + 7) \\ 3 x^2+17 x-6 & = (x + 6)(3x - 1) \\ \end{array} \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.