Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Of course! Let's solve the problem step-by-step:
We need to find the sum of two numbers represented in base-6 (also known as senary or hexary). The numbers given are [tex]\(45_{\text{six}}\)[/tex] and [tex]\(14_{\text{six}}\)[/tex].
### Step 1: Convert each number from base-6 to decimal (base-10)
First, let's convert [tex]\(45_{\text{six}}\)[/tex] to its decimal (base-10) equivalent:
- In base-6, the digit 4 is in the "6^1" place and the digit 5 is in the "6^0" place.
So, [tex]\(45_{\text{six}} = 4 \cdot 6^1 + 5 \cdot 6^0 = 4 \cdot 6 + 5 \cdot 1 = 24 + 5 = 29_{\text{ten}}\)[/tex].
Next, let's convert [tex]\(14_{\text{six}}\)[/tex] to its decimal (base-10) equivalent:
- In base-6, the digit 1 is in the "6^1" place and the digit 4 is in the "6^0" place.
So, [tex]\(14_{\text{six}} = 1 \cdot 6^1 + 4 \cdot 6^0 = 1 \cdot 6 + 4 \cdot 1 = 6 + 4 = 10_{\text{ten}}\)[/tex].
### Step 2: Perform the addition in decimal (base-10)
Now we add the two decimal numbers obtained:
[tex]\[ 29_{\text{ten}} + 10_{\text{ten}} = 39_{\text{ten}} \][/tex]
### Step 3: Convert the sum from decimal (base-10) back to base-6
Next, we convert [tex]\(39_{\text{ten}}\)[/tex] to its base-6 equivalent:
- To convert from decimal to base-6, we divide the number by 6 and keep track of the remainders.
[tex]\( 39 \div 6 = 6 \)[/tex] with a remainder of 3 (3 is in the "6^0" place).
[tex]\( 6 \div 6 = 1 \)[/tex] with a remainder of 0 (0 is in the "6^1" place).
[tex]\( 1 \div 6 = 0 \)[/tex] with a remainder of 1 (1 is in the "6^2" place).
Reading the remainders from top to bottom, we get [tex]\(103_{\text{six}}\)[/tex].
### Conclusion
Therefore, the sum of [tex]\(45_{\text{six}}\)[/tex] and [tex]\(14_{\text{six}}\)[/tex] is:
[tex]\[ 45_{\text{six}} + 14_{\text{six}} = 103_{\text{six}} \][/tex]
Thus, the final answer is [tex]\(\boxed{103}\)[/tex].
We need to find the sum of two numbers represented in base-6 (also known as senary or hexary). The numbers given are [tex]\(45_{\text{six}}\)[/tex] and [tex]\(14_{\text{six}}\)[/tex].
### Step 1: Convert each number from base-6 to decimal (base-10)
First, let's convert [tex]\(45_{\text{six}}\)[/tex] to its decimal (base-10) equivalent:
- In base-6, the digit 4 is in the "6^1" place and the digit 5 is in the "6^0" place.
So, [tex]\(45_{\text{six}} = 4 \cdot 6^1 + 5 \cdot 6^0 = 4 \cdot 6 + 5 \cdot 1 = 24 + 5 = 29_{\text{ten}}\)[/tex].
Next, let's convert [tex]\(14_{\text{six}}\)[/tex] to its decimal (base-10) equivalent:
- In base-6, the digit 1 is in the "6^1" place and the digit 4 is in the "6^0" place.
So, [tex]\(14_{\text{six}} = 1 \cdot 6^1 + 4 \cdot 6^0 = 1 \cdot 6 + 4 \cdot 1 = 6 + 4 = 10_{\text{ten}}\)[/tex].
### Step 2: Perform the addition in decimal (base-10)
Now we add the two decimal numbers obtained:
[tex]\[ 29_{\text{ten}} + 10_{\text{ten}} = 39_{\text{ten}} \][/tex]
### Step 3: Convert the sum from decimal (base-10) back to base-6
Next, we convert [tex]\(39_{\text{ten}}\)[/tex] to its base-6 equivalent:
- To convert from decimal to base-6, we divide the number by 6 and keep track of the remainders.
[tex]\( 39 \div 6 = 6 \)[/tex] with a remainder of 3 (3 is in the "6^0" place).
[tex]\( 6 \div 6 = 1 \)[/tex] with a remainder of 0 (0 is in the "6^1" place).
[tex]\( 1 \div 6 = 0 \)[/tex] with a remainder of 1 (1 is in the "6^2" place).
Reading the remainders from top to bottom, we get [tex]\(103_{\text{six}}\)[/tex].
### Conclusion
Therefore, the sum of [tex]\(45_{\text{six}}\)[/tex] and [tex]\(14_{\text{six}}\)[/tex] is:
[tex]\[ 45_{\text{six}} + 14_{\text{six}} = 103_{\text{six}} \][/tex]
Thus, the final answer is [tex]\(\boxed{103}\)[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.