Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To classify and identify the terms of the function [tex]\( f(x) = 6x^2 + x - 12 \)[/tex], let's analyze its structure step by step.
First, we need to determine the type of function. A function is:
- Linear if it can be written in the form [tex]\( f(x) = ax + b \)[/tex], where [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are constants.
- Quadratic if it can be written in the form [tex]\( f(x) = ax^2 + bx + c \)[/tex], where [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] are constants, and [tex]\( a \neq 0 \)[/tex].
Given the function [tex]\( f(x) = 6x^2 + x - 12 \)[/tex]:
1. The highest degree term is [tex]\( 6x^2 \)[/tex], which indicates that the function is quadratic since the highest power of [tex]\( x \)[/tex] is 2.
Next, let’s identify the terms within the function:
- Quadratic term: This is the term with [tex]\( x^2 \)[/tex]. In this function, it is [tex]\( 6x^2 \)[/tex].
- Linear term: This is the term with [tex]\( x \)[/tex]. In this function, it is [tex]\( x \)[/tex].
- Constant term: This is the term without [tex]\( x \)[/tex]. In this function, it is [tex]\( -12 \)[/tex].
Therefore, we can classify and identify the terms as follows:
- Quadratic function
- Quadratic term: [tex]\( 6x^2 \)[/tex]
- Linear term: [tex]\( x \)[/tex]
- Constant term: [tex]\( -12 \)[/tex]
So, the correct classification and identification are:
Quadratic function; quadratic term: [tex]\( 6x^2 \)[/tex]; linear term: [tex]\( x \)[/tex]; constant term: [tex]\( -12 \)[/tex].
Thus, the correct option is:
- Quadratic function; quadratic term: [tex]\( 6x^2 \)[/tex]; linear term: [tex]\( x \)[/tex]; constant term: -12
First, we need to determine the type of function. A function is:
- Linear if it can be written in the form [tex]\( f(x) = ax + b \)[/tex], where [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are constants.
- Quadratic if it can be written in the form [tex]\( f(x) = ax^2 + bx + c \)[/tex], where [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] are constants, and [tex]\( a \neq 0 \)[/tex].
Given the function [tex]\( f(x) = 6x^2 + x - 12 \)[/tex]:
1. The highest degree term is [tex]\( 6x^2 \)[/tex], which indicates that the function is quadratic since the highest power of [tex]\( x \)[/tex] is 2.
Next, let’s identify the terms within the function:
- Quadratic term: This is the term with [tex]\( x^2 \)[/tex]. In this function, it is [tex]\( 6x^2 \)[/tex].
- Linear term: This is the term with [tex]\( x \)[/tex]. In this function, it is [tex]\( x \)[/tex].
- Constant term: This is the term without [tex]\( x \)[/tex]. In this function, it is [tex]\( -12 \)[/tex].
Therefore, we can classify and identify the terms as follows:
- Quadratic function
- Quadratic term: [tex]\( 6x^2 \)[/tex]
- Linear term: [tex]\( x \)[/tex]
- Constant term: [tex]\( -12 \)[/tex]
So, the correct classification and identification are:
Quadratic function; quadratic term: [tex]\( 6x^2 \)[/tex]; linear term: [tex]\( x \)[/tex]; constant term: [tex]\( -12 \)[/tex].
Thus, the correct option is:
- Quadratic function; quadratic term: [tex]\( 6x^2 \)[/tex]; linear term: [tex]\( x \)[/tex]; constant term: -12
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.