Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To classify and identify the terms of the function [tex]\( f(x) = 6x^2 + x - 12 \)[/tex], let's analyze its structure step by step.
First, we need to determine the type of function. A function is:
- Linear if it can be written in the form [tex]\( f(x) = ax + b \)[/tex], where [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are constants.
- Quadratic if it can be written in the form [tex]\( f(x) = ax^2 + bx + c \)[/tex], where [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] are constants, and [tex]\( a \neq 0 \)[/tex].
Given the function [tex]\( f(x) = 6x^2 + x - 12 \)[/tex]:
1. The highest degree term is [tex]\( 6x^2 \)[/tex], which indicates that the function is quadratic since the highest power of [tex]\( x \)[/tex] is 2.
Next, let’s identify the terms within the function:
- Quadratic term: This is the term with [tex]\( x^2 \)[/tex]. In this function, it is [tex]\( 6x^2 \)[/tex].
- Linear term: This is the term with [tex]\( x \)[/tex]. In this function, it is [tex]\( x \)[/tex].
- Constant term: This is the term without [tex]\( x \)[/tex]. In this function, it is [tex]\( -12 \)[/tex].
Therefore, we can classify and identify the terms as follows:
- Quadratic function
- Quadratic term: [tex]\( 6x^2 \)[/tex]
- Linear term: [tex]\( x \)[/tex]
- Constant term: [tex]\( -12 \)[/tex]
So, the correct classification and identification are:
Quadratic function; quadratic term: [tex]\( 6x^2 \)[/tex]; linear term: [tex]\( x \)[/tex]; constant term: [tex]\( -12 \)[/tex].
Thus, the correct option is:
- Quadratic function; quadratic term: [tex]\( 6x^2 \)[/tex]; linear term: [tex]\( x \)[/tex]; constant term: -12
First, we need to determine the type of function. A function is:
- Linear if it can be written in the form [tex]\( f(x) = ax + b \)[/tex], where [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are constants.
- Quadratic if it can be written in the form [tex]\( f(x) = ax^2 + bx + c \)[/tex], where [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] are constants, and [tex]\( a \neq 0 \)[/tex].
Given the function [tex]\( f(x) = 6x^2 + x - 12 \)[/tex]:
1. The highest degree term is [tex]\( 6x^2 \)[/tex], which indicates that the function is quadratic since the highest power of [tex]\( x \)[/tex] is 2.
Next, let’s identify the terms within the function:
- Quadratic term: This is the term with [tex]\( x^2 \)[/tex]. In this function, it is [tex]\( 6x^2 \)[/tex].
- Linear term: This is the term with [tex]\( x \)[/tex]. In this function, it is [tex]\( x \)[/tex].
- Constant term: This is the term without [tex]\( x \)[/tex]. In this function, it is [tex]\( -12 \)[/tex].
Therefore, we can classify and identify the terms as follows:
- Quadratic function
- Quadratic term: [tex]\( 6x^2 \)[/tex]
- Linear term: [tex]\( x \)[/tex]
- Constant term: [tex]\( -12 \)[/tex]
So, the correct classification and identification are:
Quadratic function; quadratic term: [tex]\( 6x^2 \)[/tex]; linear term: [tex]\( x \)[/tex]; constant term: [tex]\( -12 \)[/tex].
Thus, the correct option is:
- Quadratic function; quadratic term: [tex]\( 6x^2 \)[/tex]; linear term: [tex]\( x \)[/tex]; constant term: -12
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.