Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Let's consider the equation of the circle given:
[tex]\[ x^2 + y^2 - 2x - 8 = 0 \][/tex]
We can convert this equation into the standard form of a circle equation [tex]\((x - h)^2 + (y - k)^2 = r^2\)[/tex] by completing the square.
Step-by-step process:
1. Recognize the general form:
[tex]\[ x^2 + y^2 - 2x - 8 = 0 \][/tex]
2. Complete the square for the [tex]\(x\)[/tex] terms:
- First, isolate the [tex]\(x\)[/tex] terms: [tex]\(x^2 - 2x\)[/tex].
- To complete the square, add and subtract [tex]\((\frac{-2}{2})^2 = 1\)[/tex]:
[tex]\[ x^2 - 2x + 1 - 1 \][/tex]
3. Rewrite the equation with the completed square:
[tex]\[ (x - 1)^2 - 1 + y^2 - 8 = 0 \][/tex]
4. Combine constants on one side:
[tex]\[ (x - 1)^2 + y^2 - 9 = 0 \implies (x - 1)^2 + y^2 = 9 \][/tex]
Now, the equation is in standard form [tex]\((x - 1)^2 + y^2 = 9\)[/tex].
From this standard form, we can derive the properties of the circle:
- The center [tex]\((h, k)\)[/tex] is [tex]\((1, 0)\)[/tex].
- The radius [tex]\(r\)[/tex] is [tex]\(\sqrt{9} = 3\)[/tex].
Now, let's evaluate the given statements:
1. The radius of the circle is 3 units.
- True, because [tex]\(r = \sqrt{9} = 3\)[/tex].
2. The center of the circle lies on the [tex]\(x\)[/tex]-axis.
- True, because the center is at [tex]\((1, 0)\)[/tex] which means [tex]\(k = 0\)[/tex] (on the [tex]\(x\)[/tex]-axis).
3. The center of the circle lies on the [tex]\(y\)[/tex]-axis.
- False, because the center is at [tex]\((1, 0)\)[/tex] which means [tex]\(h \neq 0\)[/tex] (not on the [tex]\(y\)[/tex]-axis).
4. The standard form of the equation is [tex]\((x-1)^2+y^2=3\)[/tex].
- False, as we determined, the correct standard form is [tex]\((x - 1)^2 + y^2 = 9\)[/tex].
5. The radius of this circle is the same as the radius of the circle whose equation is [tex]\(x^2 + y^2 = 9\)[/tex].
- True, because the radius of the circle [tex]\(x^2 + y^2 = 9\)[/tex] is [tex]\(\sqrt{9} = 3\)[/tex].
Therefore, the three correct statements are:
- The radius of the circle is 3 units.
- The center of the circle lies on the [tex]\(x\)[/tex]-axis.
- The radius of this circle is the same as the radius of the circle whose equation is [tex]\(x^2 + y^2 = 9\)[/tex].
[tex]\[ x^2 + y^2 - 2x - 8 = 0 \][/tex]
We can convert this equation into the standard form of a circle equation [tex]\((x - h)^2 + (y - k)^2 = r^2\)[/tex] by completing the square.
Step-by-step process:
1. Recognize the general form:
[tex]\[ x^2 + y^2 - 2x - 8 = 0 \][/tex]
2. Complete the square for the [tex]\(x\)[/tex] terms:
- First, isolate the [tex]\(x\)[/tex] terms: [tex]\(x^2 - 2x\)[/tex].
- To complete the square, add and subtract [tex]\((\frac{-2}{2})^2 = 1\)[/tex]:
[tex]\[ x^2 - 2x + 1 - 1 \][/tex]
3. Rewrite the equation with the completed square:
[tex]\[ (x - 1)^2 - 1 + y^2 - 8 = 0 \][/tex]
4. Combine constants on one side:
[tex]\[ (x - 1)^2 + y^2 - 9 = 0 \implies (x - 1)^2 + y^2 = 9 \][/tex]
Now, the equation is in standard form [tex]\((x - 1)^2 + y^2 = 9\)[/tex].
From this standard form, we can derive the properties of the circle:
- The center [tex]\((h, k)\)[/tex] is [tex]\((1, 0)\)[/tex].
- The radius [tex]\(r\)[/tex] is [tex]\(\sqrt{9} = 3\)[/tex].
Now, let's evaluate the given statements:
1. The radius of the circle is 3 units.
- True, because [tex]\(r = \sqrt{9} = 3\)[/tex].
2. The center of the circle lies on the [tex]\(x\)[/tex]-axis.
- True, because the center is at [tex]\((1, 0)\)[/tex] which means [tex]\(k = 0\)[/tex] (on the [tex]\(x\)[/tex]-axis).
3. The center of the circle lies on the [tex]\(y\)[/tex]-axis.
- False, because the center is at [tex]\((1, 0)\)[/tex] which means [tex]\(h \neq 0\)[/tex] (not on the [tex]\(y\)[/tex]-axis).
4. The standard form of the equation is [tex]\((x-1)^2+y^2=3\)[/tex].
- False, as we determined, the correct standard form is [tex]\((x - 1)^2 + y^2 = 9\)[/tex].
5. The radius of this circle is the same as the radius of the circle whose equation is [tex]\(x^2 + y^2 = 9\)[/tex].
- True, because the radius of the circle [tex]\(x^2 + y^2 = 9\)[/tex] is [tex]\(\sqrt{9} = 3\)[/tex].
Therefore, the three correct statements are:
- The radius of the circle is 3 units.
- The center of the circle lies on the [tex]\(x\)[/tex]-axis.
- The radius of this circle is the same as the radius of the circle whose equation is [tex]\(x^2 + y^2 = 9\)[/tex].
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.