At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Sure, let's solve the given linear programming problem step-by-step.
### Problem Statement
We need to maximize the objective function [tex]\( P = 6x + 2y \)[/tex] subject to the constraints:
[tex]\[ \begin{array}{l} \left\{ \begin{array}{l} 4x - y \geq 1 \\ x \geq 0 \\ x \leq 5 \\ y \geq 0 \end{array} \right. \end{array} \][/tex]
### Step 1: Identify the Constraints and the Feasible Region
The constraints define the feasible region within which we need to find the maximum value of [tex]\( P \)[/tex].
1. [tex]\( 4x - y \geq 1 \)[/tex] can be rephrased for graphing purposes as [tex]\( y \leq 4x - 1 \)[/tex].
2. [tex]\( x \geq 0 \)[/tex] ensures [tex]\( x \)[/tex] is non-negative.
3. [tex]\( x \leq 5 \)[/tex] bounds [tex]\( x \)[/tex] to the left by 5.
4. [tex]\( y \geq 0 \)[/tex] ensures [tex]\( y \)[/tex] is non-negative.
### Step 2: Locate the Boundary Lines
Let's graph the boundary lines and determine the intersection points:
- For [tex]\( 4x - y \geq 1 \)[/tex]:
[tex]\[ y = 4x - 1 \][/tex]
- Graph [tex]\( x \geq 0 \)[/tex] which is the [tex]\( y \)[/tex]-axis.
- Graph [tex]\( x \leq 5 \)[/tex], which is the vertical line at [tex]\( x = 5 \)[/tex].
- Graph [tex]\( y \geq 0 \)[/tex], which is the [tex]\( x \)[/tex]-axis.
### Step 3: Identify Corner/Vertex Points
Find the points where the boundary lines intersect, as these vertices define the feasible region where the maximum value of [tex]\( P \)[/tex] can occur:
1. Intersection of [tex]\( y = 4x - 1 \)[/tex] and [tex]\( x = 0 \)[/tex]:
[tex]\[ y = -1 \quad (\text{Not feasible as } y \geq 0) \][/tex]
2. Intersection of [tex]\( y = 4x - 1 \)[/tex] and [tex]\( x = 5 \)[/tex]:
[tex]\[ y = 4(5) - 1 = 20 - 1 = 19 \][/tex]
So, this gives the point [tex]\( (5, 19) \)[/tex].
3. Intersection of [tex]\( y = 4x - 1 \)[/tex] and [tex]\( y = 0 \)[/tex]:
[tex]\[ 0 = 4x - 1 \implies 4x = 1 \implies x = \frac{1}{4} \][/tex]
So, this gives the point [tex]\( \left( \frac{1}{4}, 0 \right) \)[/tex].
Other feasible vertices include any intersection of the constraints:
- [tex]\( (0, 0) \)[/tex]
- [tex]\( (5, 0) \)[/tex]
### Step 4: Evaluate the Objective Function at Each Vertex
We'll plug these vertex coordinates back into [tex]\( P = 6x + 2y \)[/tex]:
1. At [tex]\( (0, 0) \)[/tex]:
[tex]\[ P = 6(0) + 2(0) = 0 \][/tex]
2. At [tex]\( (5, 0) \)[/tex]:
[tex]\[ P = 6(5) + 2(0) = 30 \][/tex]
3. At [tex]\( \left( \frac{1}{4}, 0 \right) \)[/tex]:
[tex]\[ P = 6 \left( \frac{1}{4} \right) + 2(0) = \frac{6}{4} = 1.5 \][/tex]
4. At [tex]\( (5, 19) \)[/tex]:
[tex]\[ P = 6(5) + 2(19) = 30 + 38 = 68 \][/tex]
### Step 5: Determine the Maximum Value
After evaluating [tex]\( P \)[/tex] at all feasible vertices, the maximum value of [tex]\( P \)[/tex] is found to be [tex]\( 68 \)[/tex] at the point [tex]\( (5, 19) \)[/tex].
### Conclusion
The maximum value of [tex]\( P = 6x + 2y \)[/tex] is:
[tex]\[ P = 68 \][/tex]
attu()+ [tex]\( x = 5 \)[/tex], and [tex]\( y = 19 \)[/tex].
### Problem Statement
We need to maximize the objective function [tex]\( P = 6x + 2y \)[/tex] subject to the constraints:
[tex]\[ \begin{array}{l} \left\{ \begin{array}{l} 4x - y \geq 1 \\ x \geq 0 \\ x \leq 5 \\ y \geq 0 \end{array} \right. \end{array} \][/tex]
### Step 1: Identify the Constraints and the Feasible Region
The constraints define the feasible region within which we need to find the maximum value of [tex]\( P \)[/tex].
1. [tex]\( 4x - y \geq 1 \)[/tex] can be rephrased for graphing purposes as [tex]\( y \leq 4x - 1 \)[/tex].
2. [tex]\( x \geq 0 \)[/tex] ensures [tex]\( x \)[/tex] is non-negative.
3. [tex]\( x \leq 5 \)[/tex] bounds [tex]\( x \)[/tex] to the left by 5.
4. [tex]\( y \geq 0 \)[/tex] ensures [tex]\( y \)[/tex] is non-negative.
### Step 2: Locate the Boundary Lines
Let's graph the boundary lines and determine the intersection points:
- For [tex]\( 4x - y \geq 1 \)[/tex]:
[tex]\[ y = 4x - 1 \][/tex]
- Graph [tex]\( x \geq 0 \)[/tex] which is the [tex]\( y \)[/tex]-axis.
- Graph [tex]\( x \leq 5 \)[/tex], which is the vertical line at [tex]\( x = 5 \)[/tex].
- Graph [tex]\( y \geq 0 \)[/tex], which is the [tex]\( x \)[/tex]-axis.
### Step 3: Identify Corner/Vertex Points
Find the points where the boundary lines intersect, as these vertices define the feasible region where the maximum value of [tex]\( P \)[/tex] can occur:
1. Intersection of [tex]\( y = 4x - 1 \)[/tex] and [tex]\( x = 0 \)[/tex]:
[tex]\[ y = -1 \quad (\text{Not feasible as } y \geq 0) \][/tex]
2. Intersection of [tex]\( y = 4x - 1 \)[/tex] and [tex]\( x = 5 \)[/tex]:
[tex]\[ y = 4(5) - 1 = 20 - 1 = 19 \][/tex]
So, this gives the point [tex]\( (5, 19) \)[/tex].
3. Intersection of [tex]\( y = 4x - 1 \)[/tex] and [tex]\( y = 0 \)[/tex]:
[tex]\[ 0 = 4x - 1 \implies 4x = 1 \implies x = \frac{1}{4} \][/tex]
So, this gives the point [tex]\( \left( \frac{1}{4}, 0 \right) \)[/tex].
Other feasible vertices include any intersection of the constraints:
- [tex]\( (0, 0) \)[/tex]
- [tex]\( (5, 0) \)[/tex]
### Step 4: Evaluate the Objective Function at Each Vertex
We'll plug these vertex coordinates back into [tex]\( P = 6x + 2y \)[/tex]:
1. At [tex]\( (0, 0) \)[/tex]:
[tex]\[ P = 6(0) + 2(0) = 0 \][/tex]
2. At [tex]\( (5, 0) \)[/tex]:
[tex]\[ P = 6(5) + 2(0) = 30 \][/tex]
3. At [tex]\( \left( \frac{1}{4}, 0 \right) \)[/tex]:
[tex]\[ P = 6 \left( \frac{1}{4} \right) + 2(0) = \frac{6}{4} = 1.5 \][/tex]
4. At [tex]\( (5, 19) \)[/tex]:
[tex]\[ P = 6(5) + 2(19) = 30 + 38 = 68 \][/tex]
### Step 5: Determine the Maximum Value
After evaluating [tex]\( P \)[/tex] at all feasible vertices, the maximum value of [tex]\( P \)[/tex] is found to be [tex]\( 68 \)[/tex] at the point [tex]\( (5, 19) \)[/tex].
### Conclusion
The maximum value of [tex]\( P = 6x + 2y \)[/tex] is:
[tex]\[ P = 68 \][/tex]
attu()+ [tex]\( x = 5 \)[/tex], and [tex]\( y = 19 \)[/tex].
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.