Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

A cone is made from a sector of a circle with a radius of 14 cm and an angle of 90°. What is the area of the curved surface of the cone?

Sagot :

Let's solve the problem step-by-step:

1. Given Data and Information:
- Radius of the sector (which becomes the slant height of the cone): [tex]\( r = 14 \)[/tex] cm
- Angle of the sector: [tex]\( \theta = 90^\circ \)[/tex]

2. Determine the Arc Length of the Sector:
The arc length (L) of the sector can be calculated using the formula:
[tex]\[ L = 2 \pi r \left( \frac{\theta}{360} \right) \][/tex]
Plugging in the values:
[tex]\[ L = 2 \pi \cdot 14 \left( \frac{90}{360} \right) = 2 \pi \cdot 14 \left( \frac{1}{4} \right) = \pi \cdot 7 \][/tex]
Numerically:
[tex]\[ L \approx 21.991148575128552 \text{ cm} \][/tex]

3. Find the Radius of the Cone's Base:
The radius [tex]\(R\)[/tex] of the base of the cone is the same as the arc length divided by [tex]\(2\pi\)[/tex]:
[tex]\[ R = \frac{L}{2\pi} = \frac{21.991148575128552}{2\pi} \][/tex]
Numerically:
[tex]\[ R \approx 3.5 \text{ cm} \][/tex]

4. Slant Height of the Cone:
The slant height [tex]\(s\)[/tex] of the cone is given by the radius of the original sector:
[tex]\[ s = 14 \text{ cm} \][/tex]

5. Lateral (Curved) Surface Area of the Cone:
The lateral surface area [tex]\(A\)[/tex] of the cone can be determined using the formula:
[tex]\[ A = \pi R s \][/tex]
Plugging in the values:
[tex]\[ A = \pi \cdot 3.5 \cdot 14 \approx 153.93804002589985 \text{ cm}^2 \][/tex]

Therefore, the lateral surface area of the cone is approximately [tex]\( 153.938 \text{ cm}^2 \)[/tex].