Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Let's solve the problem step-by-step:
1. Given Data and Information:
- Radius of the sector (which becomes the slant height of the cone): [tex]\( r = 14 \)[/tex] cm
- Angle of the sector: [tex]\( \theta = 90^\circ \)[/tex]
2. Determine the Arc Length of the Sector:
The arc length (L) of the sector can be calculated using the formula:
[tex]\[ L = 2 \pi r \left( \frac{\theta}{360} \right) \][/tex]
Plugging in the values:
[tex]\[ L = 2 \pi \cdot 14 \left( \frac{90}{360} \right) = 2 \pi \cdot 14 \left( \frac{1}{4} \right) = \pi \cdot 7 \][/tex]
Numerically:
[tex]\[ L \approx 21.991148575128552 \text{ cm} \][/tex]
3. Find the Radius of the Cone's Base:
The radius [tex]\(R\)[/tex] of the base of the cone is the same as the arc length divided by [tex]\(2\pi\)[/tex]:
[tex]\[ R = \frac{L}{2\pi} = \frac{21.991148575128552}{2\pi} \][/tex]
Numerically:
[tex]\[ R \approx 3.5 \text{ cm} \][/tex]
4. Slant Height of the Cone:
The slant height [tex]\(s\)[/tex] of the cone is given by the radius of the original sector:
[tex]\[ s = 14 \text{ cm} \][/tex]
5. Lateral (Curved) Surface Area of the Cone:
The lateral surface area [tex]\(A\)[/tex] of the cone can be determined using the formula:
[tex]\[ A = \pi R s \][/tex]
Plugging in the values:
[tex]\[ A = \pi \cdot 3.5 \cdot 14 \approx 153.93804002589985 \text{ cm}^2 \][/tex]
Therefore, the lateral surface area of the cone is approximately [tex]\( 153.938 \text{ cm}^2 \)[/tex].
1. Given Data and Information:
- Radius of the sector (which becomes the slant height of the cone): [tex]\( r = 14 \)[/tex] cm
- Angle of the sector: [tex]\( \theta = 90^\circ \)[/tex]
2. Determine the Arc Length of the Sector:
The arc length (L) of the sector can be calculated using the formula:
[tex]\[ L = 2 \pi r \left( \frac{\theta}{360} \right) \][/tex]
Plugging in the values:
[tex]\[ L = 2 \pi \cdot 14 \left( \frac{90}{360} \right) = 2 \pi \cdot 14 \left( \frac{1}{4} \right) = \pi \cdot 7 \][/tex]
Numerically:
[tex]\[ L \approx 21.991148575128552 \text{ cm} \][/tex]
3. Find the Radius of the Cone's Base:
The radius [tex]\(R\)[/tex] of the base of the cone is the same as the arc length divided by [tex]\(2\pi\)[/tex]:
[tex]\[ R = \frac{L}{2\pi} = \frac{21.991148575128552}{2\pi} \][/tex]
Numerically:
[tex]\[ R \approx 3.5 \text{ cm} \][/tex]
4. Slant Height of the Cone:
The slant height [tex]\(s\)[/tex] of the cone is given by the radius of the original sector:
[tex]\[ s = 14 \text{ cm} \][/tex]
5. Lateral (Curved) Surface Area of the Cone:
The lateral surface area [tex]\(A\)[/tex] of the cone can be determined using the formula:
[tex]\[ A = \pi R s \][/tex]
Plugging in the values:
[tex]\[ A = \pi \cdot 3.5 \cdot 14 \approx 153.93804002589985 \text{ cm}^2 \][/tex]
Therefore, the lateral surface area of the cone is approximately [tex]\( 153.938 \text{ cm}^2 \)[/tex].
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.