Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine if the function represents a direct variation, we need to check two main properties:
1. The function must pass through the origin (i.e., when [tex]\( \text{Time} = 0 \)[/tex], [tex]\( \text{Cost} = 0 \)[/tex]).
2. The function must have a constant rate of change.
Let's analyze the given data:
[tex]\[ \begin{array}{|c|c|} \hline \text{Time (hours)} & \text{Cost (\$)} \\ \hline 0 & 0 \\ \hline 2 & 10 \\ \hline 4 & 20 \\ \hline 6 & 30 \\ \hline 8 & 40 \\ \hline \end{array} \][/tex]
### Step 1: Determine if the function passes through the origin
From the table, when [tex]\( \text{Time} = 0 \)[/tex], [tex]\( \text{Cost} = 0 \)[/tex]. This shows that the function passes through the origin.
### Step 2: Determine the rate of change
To find the rate of change, we can use any two points from the table. Let's use the first two points [tex]\((0, 0)\)[/tex] and [tex]\((2, 10)\)[/tex]:
[tex]\[ \text{Rate of Change} = \frac{\Delta \text{Cost}}{\Delta \text{Time}} = \frac{10 - 0}{2 - 0} = \frac{10}{2} = 5 \, \text{\$/hour} \][/tex]
Next, let's verify if this rate of change is constant for all points in the table:
- Between [tex]\((2, 10)\)[/tex] and [tex]\((4, 20)\)[/tex]:
[tex]\[ \text{Rate of Change} = \frac{20 - 10}{4 - 2} = \frac{10}{2} = 5 \, \text{\$/hour} \][/tex]
- Between [tex]\((4, 20)\)[/tex] and [tex]\((6, 30)\)[/tex]:
[tex]\[ \text{Rate of Change} = \frac{30 - 20}{6 - 4} = \frac{10}{2} = 5 \, \text{\$/hour} \][/tex]
- Between [tex]\((6, 30)\)[/tex] and [tex]\((8, 40)\)[/tex]:
[tex]\[ \text{Rate of Change} = \frac{40 - 30}{8 - 6} = \frac{10}{2} = 5 \, \text{\$/hour} \][/tex]
Since the rate of change is constant at 5 \[tex]$/hour at every interval, and the function passes through the origin, we can conclude that this function represents a direct variation. ### Conclusion The function represents a direct variation because it passes through the origin and has a constant rate of change of $[/tex] 5 per hour.
The correct explanation is:
"This function represents a direct variation because it passes through the origin and has a constant rate of change of $ 5 per hour."
1. The function must pass through the origin (i.e., when [tex]\( \text{Time} = 0 \)[/tex], [tex]\( \text{Cost} = 0 \)[/tex]).
2. The function must have a constant rate of change.
Let's analyze the given data:
[tex]\[ \begin{array}{|c|c|} \hline \text{Time (hours)} & \text{Cost (\$)} \\ \hline 0 & 0 \\ \hline 2 & 10 \\ \hline 4 & 20 \\ \hline 6 & 30 \\ \hline 8 & 40 \\ \hline \end{array} \][/tex]
### Step 1: Determine if the function passes through the origin
From the table, when [tex]\( \text{Time} = 0 \)[/tex], [tex]\( \text{Cost} = 0 \)[/tex]. This shows that the function passes through the origin.
### Step 2: Determine the rate of change
To find the rate of change, we can use any two points from the table. Let's use the first two points [tex]\((0, 0)\)[/tex] and [tex]\((2, 10)\)[/tex]:
[tex]\[ \text{Rate of Change} = \frac{\Delta \text{Cost}}{\Delta \text{Time}} = \frac{10 - 0}{2 - 0} = \frac{10}{2} = 5 \, \text{\$/hour} \][/tex]
Next, let's verify if this rate of change is constant for all points in the table:
- Between [tex]\((2, 10)\)[/tex] and [tex]\((4, 20)\)[/tex]:
[tex]\[ \text{Rate of Change} = \frac{20 - 10}{4 - 2} = \frac{10}{2} = 5 \, \text{\$/hour} \][/tex]
- Between [tex]\((4, 20)\)[/tex] and [tex]\((6, 30)\)[/tex]:
[tex]\[ \text{Rate of Change} = \frac{30 - 20}{6 - 4} = \frac{10}{2} = 5 \, \text{\$/hour} \][/tex]
- Between [tex]\((6, 30)\)[/tex] and [tex]\((8, 40)\)[/tex]:
[tex]\[ \text{Rate of Change} = \frac{40 - 30}{8 - 6} = \frac{10}{2} = 5 \, \text{\$/hour} \][/tex]
Since the rate of change is constant at 5 \[tex]$/hour at every interval, and the function passes through the origin, we can conclude that this function represents a direct variation. ### Conclusion The function represents a direct variation because it passes through the origin and has a constant rate of change of $[/tex] 5 per hour.
The correct explanation is:
"This function represents a direct variation because it passes through the origin and has a constant rate of change of $ 5 per hour."
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.