Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To explain why [tex]\( f(x) = 2x - 3 \)[/tex] has an inverse relation that is a function, let's analyze the properties of the function.
First, recall that for a function to have an inverse that is also a function, the original function must be one-to-one. A one-to-one function is defined as a function where each value of [tex]\( x \)[/tex] produces a unique value of [tex]\( f(x) \)[/tex]. In other words, no two different input values should map to the same output value.
The function given is [tex]\( f(x) = 2x - 3 \)[/tex]. To verify if this function is one-to-one, we can check if it passes the Horizontal Line Test. This test states that a function is one-to-one if and only if every horizontal line intersects the graph of the function at most once.
Furthermore, another way to determine if [tex]\( f(x) \)[/tex] is one-to-one is to look at its derivatives. For a linear function [tex]\( f(x) = 2x - 3 \)[/tex]:
1. Compute the derivative: [tex]\( f'(x) = 2 \)[/tex]
2. Since the derivative [tex]\( f'(x) = 2 \)[/tex] is a constant positive value, it indicates that the function is strictly increasing. A strictly increasing function means that for any two different input values [tex]\( x_1 \)[/tex] and [tex]\( x_2 \)[/tex] where [tex]\( x_1 \neq x_2 \)[/tex], we have [tex]\( f(x_1) \neq f(x_2) \)[/tex].
Given all these explanations, we conclude that [tex]\( f(x) = 2x - 3 \)[/tex] is indeed a one-to-one function. Therefore, this function does have an inverse that is also a function.
Hence, the correct statement to explain why [tex]\( f(x) = 2x - 3 \)[/tex] has an inverse relation that is a function is:
[tex]\[ \boxed{f(x) \text{ is a one-to-one function.}} \][/tex]
First, recall that for a function to have an inverse that is also a function, the original function must be one-to-one. A one-to-one function is defined as a function where each value of [tex]\( x \)[/tex] produces a unique value of [tex]\( f(x) \)[/tex]. In other words, no two different input values should map to the same output value.
The function given is [tex]\( f(x) = 2x - 3 \)[/tex]. To verify if this function is one-to-one, we can check if it passes the Horizontal Line Test. This test states that a function is one-to-one if and only if every horizontal line intersects the graph of the function at most once.
Furthermore, another way to determine if [tex]\( f(x) \)[/tex] is one-to-one is to look at its derivatives. For a linear function [tex]\( f(x) = 2x - 3 \)[/tex]:
1. Compute the derivative: [tex]\( f'(x) = 2 \)[/tex]
2. Since the derivative [tex]\( f'(x) = 2 \)[/tex] is a constant positive value, it indicates that the function is strictly increasing. A strictly increasing function means that for any two different input values [tex]\( x_1 \)[/tex] and [tex]\( x_2 \)[/tex] where [tex]\( x_1 \neq x_2 \)[/tex], we have [tex]\( f(x_1) \neq f(x_2) \)[/tex].
Given all these explanations, we conclude that [tex]\( f(x) = 2x - 3 \)[/tex] is indeed a one-to-one function. Therefore, this function does have an inverse that is also a function.
Hence, the correct statement to explain why [tex]\( f(x) = 2x - 3 \)[/tex] has an inverse relation that is a function is:
[tex]\[ \boxed{f(x) \text{ is a one-to-one function.}} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.