Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To verify that [tex]\( g(x) = \frac{1}{3}x \)[/tex] is the inverse of [tex]\( f(x) = 3x \)[/tex], we need to show that [tex]\( g(f(x)) = x \)[/tex] and [tex]\( f(g(x)) = x \)[/tex].
So let's verify both conditions:
1. Verifying [tex]\( g(f(x)) = x \)[/tex]:
- First, apply [tex]\( f(x) \)[/tex]:
[tex]\[ f(x) = 3x \][/tex]
- Next, apply [tex]\( g \)[/tex] to this result:
[tex]\[ g(f(x)) = g(3x) = \frac{1}{3}(3x) \][/tex]
- Simplify:
[tex]\[ g(f(x)) = x \][/tex]
This shows that applying [tex]\( g \)[/tex] to [tex]\( f(x) \)[/tex] results in [tex]\( x \)[/tex].
2. Verifying [tex]\( f(g(x)) = x \)[/tex]:
- First, apply [tex]\( g(x) \)[/tex]:
[tex]\[ g(x) = \frac{1}{3}x \][/tex]
- Next, apply [tex]\( f \)[/tex] to this result:
[tex]\[ f(g(x)) = f\left(\frac{1}{3}x\right) = 3\left(\frac{1}{3}x\right) \][/tex]
- Simplify:
[tex]\[ f(g(x)) = x \][/tex]
This shows that applying [tex]\( f \)[/tex] to [tex]\( g(x) \)[/tex] also results in [tex]\( x \)[/tex].
Therefore, we have verified that [tex]\( g(x) = \frac{1}{3}x \)[/tex] is indeed the inverse of [tex]\( f(x) = 3x \)[/tex].
Among the provided answer choices, the expression that correctly verifies this relationship is:
[tex]\[ \frac{1}{3}(3x) \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{\frac{1}{3}(3x)} \][/tex]
So let's verify both conditions:
1. Verifying [tex]\( g(f(x)) = x \)[/tex]:
- First, apply [tex]\( f(x) \)[/tex]:
[tex]\[ f(x) = 3x \][/tex]
- Next, apply [tex]\( g \)[/tex] to this result:
[tex]\[ g(f(x)) = g(3x) = \frac{1}{3}(3x) \][/tex]
- Simplify:
[tex]\[ g(f(x)) = x \][/tex]
This shows that applying [tex]\( g \)[/tex] to [tex]\( f(x) \)[/tex] results in [tex]\( x \)[/tex].
2. Verifying [tex]\( f(g(x)) = x \)[/tex]:
- First, apply [tex]\( g(x) \)[/tex]:
[tex]\[ g(x) = \frac{1}{3}x \][/tex]
- Next, apply [tex]\( f \)[/tex] to this result:
[tex]\[ f(g(x)) = f\left(\frac{1}{3}x\right) = 3\left(\frac{1}{3}x\right) \][/tex]
- Simplify:
[tex]\[ f(g(x)) = x \][/tex]
This shows that applying [tex]\( f \)[/tex] to [tex]\( g(x) \)[/tex] also results in [tex]\( x \)[/tex].
Therefore, we have verified that [tex]\( g(x) = \frac{1}{3}x \)[/tex] is indeed the inverse of [tex]\( f(x) = 3x \)[/tex].
Among the provided answer choices, the expression that correctly verifies this relationship is:
[tex]\[ \frac{1}{3}(3x) \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{\frac{1}{3}(3x)} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.