Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the range of the function [tex]\( f(x) = -2|x+1| \)[/tex], let's analyze it step-by-step.
1. Understanding the absolute value function:
- The function [tex]\( |x+1| \)[/tex] represents the absolute value of [tex]\( x+1 \)[/tex]. The absolute value function, [tex]\( |a| \)[/tex], returns the non-negative value of [tex]\( a \)[/tex]. Therefore, [tex]\( |x+1| \geq 0 \)[/tex] for all real numbers [tex]\( x \)[/tex].
2. Analyzing [tex]\( -2|x+1| \)[/tex]:
- Since [tex]\( |x+1| \)[/tex] is always non-negative, multiplying it by [tex]\(-2\)[/tex] will always yield a non-positive value. In other words, [tex]\( -2|x+1| \leq 0 \)[/tex].
- The minimum value of [tex]\( |x+1| \)[/tex] occurs when [tex]\( x = -1 \)[/tex]. In this case, [tex]\( |x+1| = |(-1)+1| = 0 \)[/tex], and thus [tex]\( f(x) = -2 \cdot 0 = 0 \)[/tex].
3. Behavior of the function as distance from [tex]\(-1\)[/tex] increases:
- As [tex]\( x \)[/tex] moves away from [tex]\(-1\)[/tex] in either direction, [tex]\( |x+1| \)[/tex] increases. When [tex]\( |x+1| \)[/tex] increases, the value of [tex]\( -2|x+1| \)[/tex] becomes more negative, meaning [tex]\( f(x) \)[/tex] decreases.
4. Finding the range:
- The maximum value [tex]\( f(x) \)[/tex] can take is [tex]\( 0 \)[/tex] when [tex]\( x = -1 \)[/tex].
- There is no lower bound to the values [tex]\( f(x) \)[/tex] can take because [tex]\( |x+1| \)[/tex] can grow indefinitely, making [tex]\( -2|x+1| \)[/tex] indefinitely negative.
- Hence, the range of [tex]\( f(x) \)[/tex] includes [tex]\( 0 \)[/tex] and all negative values.
Therefore, the range of the function [tex]\( f(x) = -2|x+1| \)[/tex] is all real numbers less than or equal to 0.
So the correct answer is:
all real numbers less than or equal to 0.
1. Understanding the absolute value function:
- The function [tex]\( |x+1| \)[/tex] represents the absolute value of [tex]\( x+1 \)[/tex]. The absolute value function, [tex]\( |a| \)[/tex], returns the non-negative value of [tex]\( a \)[/tex]. Therefore, [tex]\( |x+1| \geq 0 \)[/tex] for all real numbers [tex]\( x \)[/tex].
2. Analyzing [tex]\( -2|x+1| \)[/tex]:
- Since [tex]\( |x+1| \)[/tex] is always non-negative, multiplying it by [tex]\(-2\)[/tex] will always yield a non-positive value. In other words, [tex]\( -2|x+1| \leq 0 \)[/tex].
- The minimum value of [tex]\( |x+1| \)[/tex] occurs when [tex]\( x = -1 \)[/tex]. In this case, [tex]\( |x+1| = |(-1)+1| = 0 \)[/tex], and thus [tex]\( f(x) = -2 \cdot 0 = 0 \)[/tex].
3. Behavior of the function as distance from [tex]\(-1\)[/tex] increases:
- As [tex]\( x \)[/tex] moves away from [tex]\(-1\)[/tex] in either direction, [tex]\( |x+1| \)[/tex] increases. When [tex]\( |x+1| \)[/tex] increases, the value of [tex]\( -2|x+1| \)[/tex] becomes more negative, meaning [tex]\( f(x) \)[/tex] decreases.
4. Finding the range:
- The maximum value [tex]\( f(x) \)[/tex] can take is [tex]\( 0 \)[/tex] when [tex]\( x = -1 \)[/tex].
- There is no lower bound to the values [tex]\( f(x) \)[/tex] can take because [tex]\( |x+1| \)[/tex] can grow indefinitely, making [tex]\( -2|x+1| \)[/tex] indefinitely negative.
- Hence, the range of [tex]\( f(x) \)[/tex] includes [tex]\( 0 \)[/tex] and all negative values.
Therefore, the range of the function [tex]\( f(x) = -2|x+1| \)[/tex] is all real numbers less than or equal to 0.
So the correct answer is:
all real numbers less than or equal to 0.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.