Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

A cylinder with a base diameter of [tex]\(x\)[/tex] units has a volume of [tex]\(\pi x^3\)[/tex] cubic units.

Which statements about the cylinder are true? Select two options.

A. The radius of the cylinder is [tex]\(2x\)[/tex] units.
B. The area of the cylinder's base is [tex]\(\frac{1}{4} \pi x^2\)[/tex] square units.
C. The area of the cylinder's base is [tex]\(\frac{1}{2} \pi x^2\)[/tex] square units.
D. The height of the cylinder is [tex]\(2x\)[/tex] units.
E. The height of the cylinder is [tex]\(4x\)[/tex] units.


Sagot :

To determine which statements about the cylinder are true, we need to analyze the properties of the cylinder given:

1. The volume of the cylinder is [tex]\( \pi x^3 \)[/tex] cubic units.
2. The base diameter of the cylinder is [tex]\( x \)[/tex] units.

### Step-by-Step Solution:

Step 1: Determine the radius of the cylinder:
- The diameter of the cylinder is [tex]\( x \)[/tex] units.
- The radius [tex]\( r \)[/tex] is half of the diameter, so:
[tex]\[ r = \frac{x}{2} \][/tex]

Step 2: Verify the base area of the cylinder:
- The base area [tex]\( A \)[/tex] of a cylinder is given by [tex]\( \pi r^2 \)[/tex].
- Substituting the radius [tex]\( r = \frac{x}{2} \)[/tex]:
[tex]\[ A = \pi \left( \frac{x}{2} \right)^2 = \pi \left( \frac{x^2}{4} \right) = \frac{1}{4} \pi x^2 \][/tex]
- Therefore, the statement "The area of the cylinder's base is [tex]\( \frac{1}{4} \pi x^2 \)[/tex] square units" is true.

Step 3: Verify the height of the cylinder [tex]\( h \)[/tex]:
- The volume [tex]\( V \)[/tex] of a cylinder is given by [tex]\( V = \pi r^2 h \)[/tex].
- We know the volume [tex]\( V = \pi x^3 \)[/tex] and the base area [tex]\( \frac{1}{4} \pi x^2 \)[/tex]:
[tex]\[ \pi r^2 h = \pi x^3 \][/tex]
[tex]\[ \pi \left( \frac{x^2}{4} \right) h = \pi x^3 \][/tex]
[tex]\[ \frac{\pi x^2}{4} h = \pi x^3 \][/tex]
[tex]\[ \frac{x^2}{4} h = x^3 \][/tex]
[tex]\[ h = \frac{4x^3}{x^2} = 4x \][/tex]
- Therefore, the statement "The height of the cylinder is [tex]\( 4x \)[/tex] units" is true.

Given the information and the calculations:

1) The radius of the cylinder is [tex]$2x$[/tex] units. (False) - As calculated [tex]\( r = \frac{x}{2} \)[/tex].
2) The area of the cylinder's base is [tex]\( \frac{1}{4} \pi x^2 \)[/tex] square units. (True)
3) The area of the cylinder's base is [tex]\( \frac{1}{2} \pi x^2 \)[/tex] square units. (False)
4) The height of the cylinder is [tex]\( 2x \)[/tex] units. (False) - The height was calculated to be [tex]\( 4x \)[/tex].
5) The height of the cylinder is [tex]\( 4x \)[/tex] units. (True)

The true statements are:
- The area of the cylinder's base is [tex]\( \frac{1}{4} \pi x^2 \)[/tex] square units.
- The height of the cylinder is [tex]\( 4x \)[/tex] units.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.