Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Sure! Let's break down the transformations applied to the parent function [tex]\( y = \sqrt{x} \)[/tex] to obtain the transformed function [tex]\( y = -3 \sqrt{x-6} \)[/tex].
1. Translation:
- The term inside the square root, [tex]\( x - 6 \)[/tex], indicates a horizontal shift. Specifically, [tex]\( x \)[/tex] is replaced by [tex]\( x - 6 \)[/tex], which translates the graph 6 units to the right.
- Hence, the graph of [tex]\( y = \sqrt{x} \)[/tex] is translated 6 units to the right.
2. Reflection:
- The negative sign in front of the expression [tex]\(-3 \sqrt{x-6}\)[/tex] indicates a reflection over the x-axis.
- Therefore, the graph of [tex]\( y = \sqrt{x} \)[/tex] is reflected over the x-axis, changing all positive y-values to their negative counterparts.
3. Vertical Stretch/Compression:
- The coefficient 3 in front of the square root represents a vertical stretch or compression factor.
- Since the coefficient is 3, which is greater than 1, it indicates a vertical stretch by a factor of 3.
Putting it all together:
- The graph is translated 6 units to the right.
- The graph is reflected over the x-axis.
- The graph has a vertical stretch by a factor of 3.
So the complete explanation of the transformations is as follows:
1. The graph is translated 6 units to the right.
2. The graph is reflected over the x-axis.
3. The graph has a vertical stretch by a factor of 3.
Therefore, the correct results are:
- Translation: The graph is translated 6 units right.
- Reflection: The graph is reflected over the x-axis.
- Vertical Stretch: The graph has a vertical stretch by a factor of 3.
1. Translation:
- The term inside the square root, [tex]\( x - 6 \)[/tex], indicates a horizontal shift. Specifically, [tex]\( x \)[/tex] is replaced by [tex]\( x - 6 \)[/tex], which translates the graph 6 units to the right.
- Hence, the graph of [tex]\( y = \sqrt{x} \)[/tex] is translated 6 units to the right.
2. Reflection:
- The negative sign in front of the expression [tex]\(-3 \sqrt{x-6}\)[/tex] indicates a reflection over the x-axis.
- Therefore, the graph of [tex]\( y = \sqrt{x} \)[/tex] is reflected over the x-axis, changing all positive y-values to their negative counterparts.
3. Vertical Stretch/Compression:
- The coefficient 3 in front of the square root represents a vertical stretch or compression factor.
- Since the coefficient is 3, which is greater than 1, it indicates a vertical stretch by a factor of 3.
Putting it all together:
- The graph is translated 6 units to the right.
- The graph is reflected over the x-axis.
- The graph has a vertical stretch by a factor of 3.
So the complete explanation of the transformations is as follows:
1. The graph is translated 6 units to the right.
2. The graph is reflected over the x-axis.
3. The graph has a vertical stretch by a factor of 3.
Therefore, the correct results are:
- Translation: The graph is translated 6 units right.
- Reflection: The graph is reflected over the x-axis.
- Vertical Stretch: The graph has a vertical stretch by a factor of 3.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.