Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Ask your questions and receive precise answers from experienced professionals across different disciplines. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To identify the minimum value of the function [tex]\( y = 2x^2 + 4x \)[/tex], we need to follow several steps:
1. Find the first derivative of the function:
To locate the critical points where the minimum might occur, we first take the first derivative of the function [tex]\( y \)[/tex] with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{dy}{dx} = \frac{d}{dx}(2x^2 + 4x) = 4x + 4 \][/tex]
2. Set the first derivative equal to zero:
Next, we set the first derivative equal to zero to find the critical points:
[tex]\[ 4x + 4 = 0 \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ 4x = -4 \implies x = -1 \][/tex]
So, the critical point is [tex]\( x = -1 \)[/tex].
3. Determine the nature of the critical point:
We need to find the second derivative of the function to determine whether the critical point is a minimum, maximum, or inflection point:
[tex]\[ \frac{d^2y}{dx^2} = \frac{d}{dx}(4x + 4) = 4 \][/tex]
Since the second derivative is positive ([tex]\( 4 > 0 \)[/tex]), the function is concave upwards at [tex]\( x = -1 \)[/tex]. This indicates that [tex]\( x = -1 \)[/tex] is a point of local minimum.
4. Evaluate the function at the critical point:
To find the minimum value of the function, we evaluate [tex]\( y \)[/tex] at [tex]\( x = -1 \)[/tex]:
[tex]\[ y(-1) = 2(-1)^2 + 4(-1) = 2(1) - 4 = 2 - 4 = -2 \][/tex]
Therefore, the minimum value of the function [tex]\( y = 2x^2 + 4x \)[/tex] is [tex]\(\boxed{-2}\)[/tex].
1. Find the first derivative of the function:
To locate the critical points where the minimum might occur, we first take the first derivative of the function [tex]\( y \)[/tex] with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{dy}{dx} = \frac{d}{dx}(2x^2 + 4x) = 4x + 4 \][/tex]
2. Set the first derivative equal to zero:
Next, we set the first derivative equal to zero to find the critical points:
[tex]\[ 4x + 4 = 0 \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ 4x = -4 \implies x = -1 \][/tex]
So, the critical point is [tex]\( x = -1 \)[/tex].
3. Determine the nature of the critical point:
We need to find the second derivative of the function to determine whether the critical point is a minimum, maximum, or inflection point:
[tex]\[ \frac{d^2y}{dx^2} = \frac{d}{dx}(4x + 4) = 4 \][/tex]
Since the second derivative is positive ([tex]\( 4 > 0 \)[/tex]), the function is concave upwards at [tex]\( x = -1 \)[/tex]. This indicates that [tex]\( x = -1 \)[/tex] is a point of local minimum.
4. Evaluate the function at the critical point:
To find the minimum value of the function, we evaluate [tex]\( y \)[/tex] at [tex]\( x = -1 \)[/tex]:
[tex]\[ y(-1) = 2(-1)^2 + 4(-1) = 2(1) - 4 = 2 - 4 = -2 \][/tex]
Therefore, the minimum value of the function [tex]\( y = 2x^2 + 4x \)[/tex] is [tex]\(\boxed{-2}\)[/tex].
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.