Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve this question, we need to understand the expressions for width and length and determine both the mathematical and reasonable domains for the variable [tex]\( x \)[/tex].
Given the expressions for width and length:
- Width: [tex]\( 0.5x - 2 \)[/tex]
- Length: [tex]\( 2x + 2 \)[/tex]
### Step 1: Identify the mathematical domain
The mathematical domain is the set of all possible values of [tex]\( x \)[/tex] for which the expressions are defined. The expressions [tex]\( 0.5x - 2 \)[/tex] and [tex]\( 2x + 2 \)[/tex] are both linear functions, which means they are defined for all real numbers. Hence, the mathematical domain is:
[tex]\[ \{x \in \mathbb{R}\} \][/tex]
### Step 2: Define the constraints for the reasonable domain
Next, we need to find the range of [tex]\( x \)[/tex] where the dimensions make sense. Specifically, the width and the length must be positive, and the length should not exceed 52 cm.
#### Constraint 1: Width is positive
[tex]\[ 0.5x - 2 > 0 \][/tex]
[tex]\[ 0.5x > 2 \][/tex]
[tex]\[ x > 4 \][/tex]
#### Constraint 2: Length does not exceed 52 cm
[tex]\[ 2x + 2 \leq 52 \][/tex]
[tex]\[ 2x \leq 50 \][/tex]
[tex]\[ x \leq 25 \][/tex]
### Step 3: Combine the constraints for the reasonable domain
We combine these two constraints:
[tex]\[ 4 < x \leq 25 \][/tex]
Thus, the reasonable domain is:
[tex]\[ \{4 < x \leq 25\} \][/tex]
### Summary
- The mathematical domain is:
[tex]\[ \{x \in \mathbb{R}\} \][/tex]
- The reasonable domain is:
[tex]\[ \{4 < x \leq 25\} \][/tex]
Therefore, the option that matches these findings is:
[tex]\[ \text{mathematical: } \{x \in \mathbb{R}\} \quad \text{reasonable: } \{4 < x \leq 25\} \][/tex]
Given the expressions for width and length:
- Width: [tex]\( 0.5x - 2 \)[/tex]
- Length: [tex]\( 2x + 2 \)[/tex]
### Step 1: Identify the mathematical domain
The mathematical domain is the set of all possible values of [tex]\( x \)[/tex] for which the expressions are defined. The expressions [tex]\( 0.5x - 2 \)[/tex] and [tex]\( 2x + 2 \)[/tex] are both linear functions, which means they are defined for all real numbers. Hence, the mathematical domain is:
[tex]\[ \{x \in \mathbb{R}\} \][/tex]
### Step 2: Define the constraints for the reasonable domain
Next, we need to find the range of [tex]\( x \)[/tex] where the dimensions make sense. Specifically, the width and the length must be positive, and the length should not exceed 52 cm.
#### Constraint 1: Width is positive
[tex]\[ 0.5x - 2 > 0 \][/tex]
[tex]\[ 0.5x > 2 \][/tex]
[tex]\[ x > 4 \][/tex]
#### Constraint 2: Length does not exceed 52 cm
[tex]\[ 2x + 2 \leq 52 \][/tex]
[tex]\[ 2x \leq 50 \][/tex]
[tex]\[ x \leq 25 \][/tex]
### Step 3: Combine the constraints for the reasonable domain
We combine these two constraints:
[tex]\[ 4 < x \leq 25 \][/tex]
Thus, the reasonable domain is:
[tex]\[ \{4 < x \leq 25\} \][/tex]
### Summary
- The mathematical domain is:
[tex]\[ \{x \in \mathbb{R}\} \][/tex]
- The reasonable domain is:
[tex]\[ \{4 < x \leq 25\} \][/tex]
Therefore, the option that matches these findings is:
[tex]\[ \text{mathematical: } \{x \in \mathbb{R}\} \quad \text{reasonable: } \{4 < x \leq 25\} \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.