At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Certainly! Let’s break down how the graph of the function [tex]\( g(x) \)[/tex] will differ from the graph of the function [tex]\( f(x) \)[/tex].
First, let's recognize the given functions:
[tex]\[ f(x) = 2^x \][/tex]
[tex]\[ g(x) = f(x) + 6 \][/tex]
By substituting the expression of [tex]\( f(x) \)[/tex] into [tex]\( g(x) \)[/tex]:
[tex]\[ g(x) = 2^x + 6 \][/tex]
To understand how the graph of [tex]\( g(x) \)[/tex] differs from the graph of [tex]\( f(x) \)[/tex], we need to observe the transformation applied through the term [tex]\( + 6 \)[/tex].
The function [tex]\( g(x) \)[/tex] does precisely this: it takes each value of [tex]\( f(x) \)[/tex] and adds 6 to it. Graphically, adding a constant to a function [tex]\( f(x) \)[/tex] will shift the graph of [tex]\( f(x) \)[/tex] vertically.
Here’s the step-by-step reasoning:
1. Consider a point [tex]\( (a, f(a)) \)[/tex] on the graph of [tex]\( f(x) \)[/tex]. This point corresponds to [tex]\( (a, 2^a) \)[/tex].
2. For the same value [tex]\( a \)[/tex], the corresponding point on the graph of [tex]\( g(x) \)[/tex] will be [tex]\( (a, g(a)) \)[/tex] which is [tex]\( (a, 2^a + 6) \)[/tex].
Notice that for every point [tex]\( a \)[/tex], [tex]\( g(a) = f(a) + 6 \)[/tex]. This means each point on the graph of [tex]\( f(x) \)[/tex] is shifted up by 6 units to get the graph of [tex]\( g(x) \)[/tex].
Thus, the correct description is:
- The graph of the function [tex]\( g(x) \)[/tex] is the graph of the function [tex]\( f(x) \)[/tex] shifted 6 units up.
So, the correct answer is:
[tex]\[ \boxed{C} \][/tex]
This means the solution is option [tex]\( C \)[/tex]: The graph of function [tex]\( g \)[/tex] is the graph of function [tex]\( f \)[/tex] shifted 6 units up.
First, let's recognize the given functions:
[tex]\[ f(x) = 2^x \][/tex]
[tex]\[ g(x) = f(x) + 6 \][/tex]
By substituting the expression of [tex]\( f(x) \)[/tex] into [tex]\( g(x) \)[/tex]:
[tex]\[ g(x) = 2^x + 6 \][/tex]
To understand how the graph of [tex]\( g(x) \)[/tex] differs from the graph of [tex]\( f(x) \)[/tex], we need to observe the transformation applied through the term [tex]\( + 6 \)[/tex].
The function [tex]\( g(x) \)[/tex] does precisely this: it takes each value of [tex]\( f(x) \)[/tex] and adds 6 to it. Graphically, adding a constant to a function [tex]\( f(x) \)[/tex] will shift the graph of [tex]\( f(x) \)[/tex] vertically.
Here’s the step-by-step reasoning:
1. Consider a point [tex]\( (a, f(a)) \)[/tex] on the graph of [tex]\( f(x) \)[/tex]. This point corresponds to [tex]\( (a, 2^a) \)[/tex].
2. For the same value [tex]\( a \)[/tex], the corresponding point on the graph of [tex]\( g(x) \)[/tex] will be [tex]\( (a, g(a)) \)[/tex] which is [tex]\( (a, 2^a + 6) \)[/tex].
Notice that for every point [tex]\( a \)[/tex], [tex]\( g(a) = f(a) + 6 \)[/tex]. This means each point on the graph of [tex]\( f(x) \)[/tex] is shifted up by 6 units to get the graph of [tex]\( g(x) \)[/tex].
Thus, the correct description is:
- The graph of the function [tex]\( g(x) \)[/tex] is the graph of the function [tex]\( f(x) \)[/tex] shifted 6 units up.
So, the correct answer is:
[tex]\[ \boxed{C} \][/tex]
This means the solution is option [tex]\( C \)[/tex]: The graph of function [tex]\( g \)[/tex] is the graph of function [tex]\( f \)[/tex] shifted 6 units up.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.