Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To simplify the algebraic expression [tex]\(\sqrt{45x^5}\)[/tex], let's follow a step-by-step process:
1. Factor the constants:
- Notice that 45 can be factored into [tex]\(9 \times 5\)[/tex].
- So, [tex]\(\sqrt{45x^5} = \sqrt{9 \times 5 \times x^5}\)[/tex].
2. Simplify the square root of the constant part:
- The square root of 9 is 3, so we can take the square root of 9 out of the radical.
- This gives us [tex]\(3 \sqrt{5x^5}\)[/tex].
3. Simplify the variable part under the square root:
- We can rewrite [tex]\(x^5\)[/tex] as [tex]\(x^4 \times x\)[/tex], since [tex]\(x^4 \times x = x^5\)[/tex].
- Hence, [tex]\(\sqrt{5x^5}\)[/tex] becomes [tex]\(\sqrt{5 x^4 x}\)[/tex].
4. Simplify the square root of the variable part:
- Since [tex]\(x^4\)[/tex] is a perfect square ([tex]\(x^4 = (x^2)^2\)[/tex]), we can take [tex]\(x^2\)[/tex] out of the radical.
- This gives us [tex]\(3 x^2 \sqrt{5 x}\)[/tex].
Putting it all together, the simplified form of the given expression is:
[tex]\[ 3 x^2 \sqrt{5 x} \][/tex]
Therefore, the correct answer is:
B. [tex]\(3 x^2 \sqrt{5 x}\)[/tex]
1. Factor the constants:
- Notice that 45 can be factored into [tex]\(9 \times 5\)[/tex].
- So, [tex]\(\sqrt{45x^5} = \sqrt{9 \times 5 \times x^5}\)[/tex].
2. Simplify the square root of the constant part:
- The square root of 9 is 3, so we can take the square root of 9 out of the radical.
- This gives us [tex]\(3 \sqrt{5x^5}\)[/tex].
3. Simplify the variable part under the square root:
- We can rewrite [tex]\(x^5\)[/tex] as [tex]\(x^4 \times x\)[/tex], since [tex]\(x^4 \times x = x^5\)[/tex].
- Hence, [tex]\(\sqrt{5x^5}\)[/tex] becomes [tex]\(\sqrt{5 x^4 x}\)[/tex].
4. Simplify the square root of the variable part:
- Since [tex]\(x^4\)[/tex] is a perfect square ([tex]\(x^4 = (x^2)^2\)[/tex]), we can take [tex]\(x^2\)[/tex] out of the radical.
- This gives us [tex]\(3 x^2 \sqrt{5 x}\)[/tex].
Putting it all together, the simplified form of the given expression is:
[tex]\[ 3 x^2 \sqrt{5 x} \][/tex]
Therefore, the correct answer is:
B. [tex]\(3 x^2 \sqrt{5 x}\)[/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.