Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

Compare the magnitude of electromagnetic and gravitational force between two electrons separated by a distance of 2.00 m. Assume electrons have a mass of [tex]\(9.11 \times 10^{-31} \, \text{kg}\)[/tex] and a charge of [tex]\(1.61 \times 10^{-19} \, \text{C}\)[/tex]. Round to two decimal places.

[tex]\[
\begin{aligned}
F_e & = \square \times 10^{-29} \\
F_g & = \square \times 10^{-71} \\
\frac{F_e}{F_g} & = \square \times 10^{42}
\end{aligned}
\][/tex]


Sagot :

To compare the magnitudes of the electromagnetic and gravitational forces between two electrons separated by a distance of 2.00 meters, we need to calculate both forces and then find the ratio of the electromagnetic force to the gravitational force. Here are the steps:

1. Constants and Given Data:
- Mass of an electron, [tex]\( m = 9.11 \times 10^{-31} \, \text{kg} \)[/tex]
- Charge of an electron, [tex]\( e = 1.61 \times 10^{-19} \, \text{C} \)[/tex]
- Distance between electrons, [tex]\( d = 2.00 \, \text{m} \)[/tex]
- Coulomb's constant, [tex]\( k_e = 8.99 \times 10^9 \, \text{N m}^2 \text{C}^{-2} \)[/tex]
- Gravitational constant, [tex]\( G = 6.67430 \times 10^{-11} \, \text{N m}^2 \text{kg}^{-2} \)[/tex]

2. Calculating the Electromagnetic Force [tex]\( F_e \)[/tex]:
[tex]\[ F_e = \frac{k_e \cdot e^2}{d^2} \][/tex]
- Substituting the given values:
[tex]\[ F_e = \frac{8.99 \times 10^9 \, \text{N m}^2 \text{C}^{-2} \cdot (1.61 \times 10^{-19} \, \text{C})^2}{(2.00 \, \text{m})^2} \][/tex]
- The calculated value for [tex]\( F_e \)[/tex] rounded to two decimal places is:
[tex]\[ F_e \approx 5.83 \times 10^{-29} \, \text{N} \][/tex]

3. Calculating the Gravitational Force [tex]\( F_g \)[/tex]:
[tex]\[ F_g = \frac{G \cdot m^2}{d^2} \][/tex]
- Substituting the given values:
[tex]\[ F_g = \frac{6.67430 \times 10^{-11} \, \text{N m}^2 \text{kg}^{-2} \cdot (9.11 \times 10^{-31} \, \text{kg})^2}{(2.00 \, \text{m})^2} \][/tex]
- The calculated value for [tex]\( F_g \)[/tex] rounded to two decimal places is:
[tex]\[ F_g \approx 1.38 \times 10^{-71} \, \text{N} \][/tex]

4. Calculating the Ratio [tex]\( \frac{F_e}{F_g} \)[/tex]:
[tex]\[ \frac{F_e}{F_g} = \frac{5.83 \times 10^{-29} \, \text{N}}{1.38 \times 10^{-71} \, \text{N}} \][/tex]
- This results in:
[tex]\[ \frac{F_e}{F_g} \approx 4.21 \times 10^{42} \][/tex]

Summarizing all the rounded calculations, we have:
[tex]\[ \begin{aligned} F_e & = 5.83 \times 10^{-29} \, \text{N} \\ F_g & = 1.38 \times 10^{-71} \, \text{N} \\ \frac{F_e}{F_g} & = 4.21 \times 10^{42} \end{aligned} \][/tex]

So, the final results are:
[tex]\[ \begin{aligned} F_e & = 5.83 \times 10^{-29} \, \text{N} \\ F_g & = 1.38 \times 10^{-71} \, \text{N} \\ \frac{F_e}{F_g} & = 4.21 \times 10^{42} \end{aligned} \][/tex]