Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To compare the magnitudes of the electromagnetic and gravitational forces between two electrons separated by a distance of 2.00 meters, we need to calculate both forces and then find the ratio of the electromagnetic force to the gravitational force. Here are the steps:
1. Constants and Given Data:
- Mass of an electron, [tex]\( m = 9.11 \times 10^{-31} \, \text{kg} \)[/tex]
- Charge of an electron, [tex]\( e = 1.61 \times 10^{-19} \, \text{C} \)[/tex]
- Distance between electrons, [tex]\( d = 2.00 \, \text{m} \)[/tex]
- Coulomb's constant, [tex]\( k_e = 8.99 \times 10^9 \, \text{N m}^2 \text{C}^{-2} \)[/tex]
- Gravitational constant, [tex]\( G = 6.67430 \times 10^{-11} \, \text{N m}^2 \text{kg}^{-2} \)[/tex]
2. Calculating the Electromagnetic Force [tex]\( F_e \)[/tex]:
[tex]\[ F_e = \frac{k_e \cdot e^2}{d^2} \][/tex]
- Substituting the given values:
[tex]\[ F_e = \frac{8.99 \times 10^9 \, \text{N m}^2 \text{C}^{-2} \cdot (1.61 \times 10^{-19} \, \text{C})^2}{(2.00 \, \text{m})^2} \][/tex]
- The calculated value for [tex]\( F_e \)[/tex] rounded to two decimal places is:
[tex]\[ F_e \approx 5.83 \times 10^{-29} \, \text{N} \][/tex]
3. Calculating the Gravitational Force [tex]\( F_g \)[/tex]:
[tex]\[ F_g = \frac{G \cdot m^2}{d^2} \][/tex]
- Substituting the given values:
[tex]\[ F_g = \frac{6.67430 \times 10^{-11} \, \text{N m}^2 \text{kg}^{-2} \cdot (9.11 \times 10^{-31} \, \text{kg})^2}{(2.00 \, \text{m})^2} \][/tex]
- The calculated value for [tex]\( F_g \)[/tex] rounded to two decimal places is:
[tex]\[ F_g \approx 1.38 \times 10^{-71} \, \text{N} \][/tex]
4. Calculating the Ratio [tex]\( \frac{F_e}{F_g} \)[/tex]:
[tex]\[ \frac{F_e}{F_g} = \frac{5.83 \times 10^{-29} \, \text{N}}{1.38 \times 10^{-71} \, \text{N}} \][/tex]
- This results in:
[tex]\[ \frac{F_e}{F_g} \approx 4.21 \times 10^{42} \][/tex]
Summarizing all the rounded calculations, we have:
[tex]\[ \begin{aligned} F_e & = 5.83 \times 10^{-29} \, \text{N} \\ F_g & = 1.38 \times 10^{-71} \, \text{N} \\ \frac{F_e}{F_g} & = 4.21 \times 10^{42} \end{aligned} \][/tex]
So, the final results are:
[tex]\[ \begin{aligned} F_e & = 5.83 \times 10^{-29} \, \text{N} \\ F_g & = 1.38 \times 10^{-71} \, \text{N} \\ \frac{F_e}{F_g} & = 4.21 \times 10^{42} \end{aligned} \][/tex]
1. Constants and Given Data:
- Mass of an electron, [tex]\( m = 9.11 \times 10^{-31} \, \text{kg} \)[/tex]
- Charge of an electron, [tex]\( e = 1.61 \times 10^{-19} \, \text{C} \)[/tex]
- Distance between electrons, [tex]\( d = 2.00 \, \text{m} \)[/tex]
- Coulomb's constant, [tex]\( k_e = 8.99 \times 10^9 \, \text{N m}^2 \text{C}^{-2} \)[/tex]
- Gravitational constant, [tex]\( G = 6.67430 \times 10^{-11} \, \text{N m}^2 \text{kg}^{-2} \)[/tex]
2. Calculating the Electromagnetic Force [tex]\( F_e \)[/tex]:
[tex]\[ F_e = \frac{k_e \cdot e^2}{d^2} \][/tex]
- Substituting the given values:
[tex]\[ F_e = \frac{8.99 \times 10^9 \, \text{N m}^2 \text{C}^{-2} \cdot (1.61 \times 10^{-19} \, \text{C})^2}{(2.00 \, \text{m})^2} \][/tex]
- The calculated value for [tex]\( F_e \)[/tex] rounded to two decimal places is:
[tex]\[ F_e \approx 5.83 \times 10^{-29} \, \text{N} \][/tex]
3. Calculating the Gravitational Force [tex]\( F_g \)[/tex]:
[tex]\[ F_g = \frac{G \cdot m^2}{d^2} \][/tex]
- Substituting the given values:
[tex]\[ F_g = \frac{6.67430 \times 10^{-11} \, \text{N m}^2 \text{kg}^{-2} \cdot (9.11 \times 10^{-31} \, \text{kg})^2}{(2.00 \, \text{m})^2} \][/tex]
- The calculated value for [tex]\( F_g \)[/tex] rounded to two decimal places is:
[tex]\[ F_g \approx 1.38 \times 10^{-71} \, \text{N} \][/tex]
4. Calculating the Ratio [tex]\( \frac{F_e}{F_g} \)[/tex]:
[tex]\[ \frac{F_e}{F_g} = \frac{5.83 \times 10^{-29} \, \text{N}}{1.38 \times 10^{-71} \, \text{N}} \][/tex]
- This results in:
[tex]\[ \frac{F_e}{F_g} \approx 4.21 \times 10^{42} \][/tex]
Summarizing all the rounded calculations, we have:
[tex]\[ \begin{aligned} F_e & = 5.83 \times 10^{-29} \, \text{N} \\ F_g & = 1.38 \times 10^{-71} \, \text{N} \\ \frac{F_e}{F_g} & = 4.21 \times 10^{42} \end{aligned} \][/tex]
So, the final results are:
[tex]\[ \begin{aligned} F_e & = 5.83 \times 10^{-29} \, \text{N} \\ F_g & = 1.38 \times 10^{-71} \, \text{N} \\ \frac{F_e}{F_g} & = 4.21 \times 10^{42} \end{aligned} \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.