Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To compare the magnitudes of the electromagnetic and gravitational forces between two electrons separated by a distance of 2.00 meters, we need to calculate both forces and then find the ratio of the electromagnetic force to the gravitational force. Here are the steps:
1. Constants and Given Data:
- Mass of an electron, [tex]\( m = 9.11 \times 10^{-31} \, \text{kg} \)[/tex]
- Charge of an electron, [tex]\( e = 1.61 \times 10^{-19} \, \text{C} \)[/tex]
- Distance between electrons, [tex]\( d = 2.00 \, \text{m} \)[/tex]
- Coulomb's constant, [tex]\( k_e = 8.99 \times 10^9 \, \text{N m}^2 \text{C}^{-2} \)[/tex]
- Gravitational constant, [tex]\( G = 6.67430 \times 10^{-11} \, \text{N m}^2 \text{kg}^{-2} \)[/tex]
2. Calculating the Electromagnetic Force [tex]\( F_e \)[/tex]:
[tex]\[ F_e = \frac{k_e \cdot e^2}{d^2} \][/tex]
- Substituting the given values:
[tex]\[ F_e = \frac{8.99 \times 10^9 \, \text{N m}^2 \text{C}^{-2} \cdot (1.61 \times 10^{-19} \, \text{C})^2}{(2.00 \, \text{m})^2} \][/tex]
- The calculated value for [tex]\( F_e \)[/tex] rounded to two decimal places is:
[tex]\[ F_e \approx 5.83 \times 10^{-29} \, \text{N} \][/tex]
3. Calculating the Gravitational Force [tex]\( F_g \)[/tex]:
[tex]\[ F_g = \frac{G \cdot m^2}{d^2} \][/tex]
- Substituting the given values:
[tex]\[ F_g = \frac{6.67430 \times 10^{-11} \, \text{N m}^2 \text{kg}^{-2} \cdot (9.11 \times 10^{-31} \, \text{kg})^2}{(2.00 \, \text{m})^2} \][/tex]
- The calculated value for [tex]\( F_g \)[/tex] rounded to two decimal places is:
[tex]\[ F_g \approx 1.38 \times 10^{-71} \, \text{N} \][/tex]
4. Calculating the Ratio [tex]\( \frac{F_e}{F_g} \)[/tex]:
[tex]\[ \frac{F_e}{F_g} = \frac{5.83 \times 10^{-29} \, \text{N}}{1.38 \times 10^{-71} \, \text{N}} \][/tex]
- This results in:
[tex]\[ \frac{F_e}{F_g} \approx 4.21 \times 10^{42} \][/tex]
Summarizing all the rounded calculations, we have:
[tex]\[ \begin{aligned} F_e & = 5.83 \times 10^{-29} \, \text{N} \\ F_g & = 1.38 \times 10^{-71} \, \text{N} \\ \frac{F_e}{F_g} & = 4.21 \times 10^{42} \end{aligned} \][/tex]
So, the final results are:
[tex]\[ \begin{aligned} F_e & = 5.83 \times 10^{-29} \, \text{N} \\ F_g & = 1.38 \times 10^{-71} \, \text{N} \\ \frac{F_e}{F_g} & = 4.21 \times 10^{42} \end{aligned} \][/tex]
1. Constants and Given Data:
- Mass of an electron, [tex]\( m = 9.11 \times 10^{-31} \, \text{kg} \)[/tex]
- Charge of an electron, [tex]\( e = 1.61 \times 10^{-19} \, \text{C} \)[/tex]
- Distance between electrons, [tex]\( d = 2.00 \, \text{m} \)[/tex]
- Coulomb's constant, [tex]\( k_e = 8.99 \times 10^9 \, \text{N m}^2 \text{C}^{-2} \)[/tex]
- Gravitational constant, [tex]\( G = 6.67430 \times 10^{-11} \, \text{N m}^2 \text{kg}^{-2} \)[/tex]
2. Calculating the Electromagnetic Force [tex]\( F_e \)[/tex]:
[tex]\[ F_e = \frac{k_e \cdot e^2}{d^2} \][/tex]
- Substituting the given values:
[tex]\[ F_e = \frac{8.99 \times 10^9 \, \text{N m}^2 \text{C}^{-2} \cdot (1.61 \times 10^{-19} \, \text{C})^2}{(2.00 \, \text{m})^2} \][/tex]
- The calculated value for [tex]\( F_e \)[/tex] rounded to two decimal places is:
[tex]\[ F_e \approx 5.83 \times 10^{-29} \, \text{N} \][/tex]
3. Calculating the Gravitational Force [tex]\( F_g \)[/tex]:
[tex]\[ F_g = \frac{G \cdot m^2}{d^2} \][/tex]
- Substituting the given values:
[tex]\[ F_g = \frac{6.67430 \times 10^{-11} \, \text{N m}^2 \text{kg}^{-2} \cdot (9.11 \times 10^{-31} \, \text{kg})^2}{(2.00 \, \text{m})^2} \][/tex]
- The calculated value for [tex]\( F_g \)[/tex] rounded to two decimal places is:
[tex]\[ F_g \approx 1.38 \times 10^{-71} \, \text{N} \][/tex]
4. Calculating the Ratio [tex]\( \frac{F_e}{F_g} \)[/tex]:
[tex]\[ \frac{F_e}{F_g} = \frac{5.83 \times 10^{-29} \, \text{N}}{1.38 \times 10^{-71} \, \text{N}} \][/tex]
- This results in:
[tex]\[ \frac{F_e}{F_g} \approx 4.21 \times 10^{42} \][/tex]
Summarizing all the rounded calculations, we have:
[tex]\[ \begin{aligned} F_e & = 5.83 \times 10^{-29} \, \text{N} \\ F_g & = 1.38 \times 10^{-71} \, \text{N} \\ \frac{F_e}{F_g} & = 4.21 \times 10^{42} \end{aligned} \][/tex]
So, the final results are:
[tex]\[ \begin{aligned} F_e & = 5.83 \times 10^{-29} \, \text{N} \\ F_g & = 1.38 \times 10^{-71} \, \text{N} \\ \frac{F_e}{F_g} & = 4.21 \times 10^{42} \end{aligned} \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.