Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

According to the Rational Root Theorem, [tex]\(-\frac{7}{8}\)[/tex] is a potential rational root of which function?

A. [tex]\(f(x) = 24x^7 + 3x^6 + 4x^3 - x - 28\)[/tex]

B. [tex]\(f(x) = 28x^7 + 3x^6 + 4x^3 - x - 24\)[/tex]

C. [tex]\(f(x) = 30x^7 + 3x^6 + 4x^3 - x - 56\)[/tex]

D. [tex]\(f(x) = 56x^7 + 3x^6 + 4x^3 - x - 30\)[/tex]


Sagot :

To determine if [tex]\(-\frac{7}{8}\)[/tex] is a potential rational root for any of the given polynomials, we need to substitute [tex]\( x = -\frac{7}{8} \)[/tex] into each polynomial and evaluate the result. If the value of the polynomial at [tex]\( x = -\frac{7}{8} \)[/tex] is zero, then [tex]\(-\frac{7}{8}\)[/tex] is indeed a root of that polynomial.

Consider each polynomial one by one:

1. First polynomial: [tex]\( f(x) = 24x^7 + 3x^6 + 4x^3 - x - 28 \)[/tex]
[tex]\[ f\left(-\frac{7}{8}\right) = 24\left(-\frac{7}{8}\right)^7 + 3\left(-\frac{7}{8}\right)^6 + 4\left(-\frac{7}{8}\right)^3 - \left(-\frac{7}{8}\right) - 28 \][/tex]
The result is approximately [tex]\(-37.883\)[/tex], which is not zero.

2. Second polynomial: [tex]\( f(x) = 28x^7 + 3x^6 + 4x^3 - x - 24 \)[/tex]
[tex]\[ f\left(-\frac{7}{8}\right) = 28\left(-\frac{7}{8}\right)^7 + 3\left(-\frac{7}{8}\right)^6 + 4\left(-\frac{7}{8}\right)^3 - \left(-\frac{7}{8}\right) - 24 \][/tex]
The result is approximately [tex]\(-35.454\)[/tex], which is not zero.

3. Third polynomial: [tex]\( f(x) = 30x^7 + 3x^6 + 4x^3 - x - 56 \)[/tex]
[tex]\[ f\left(-\frac{7}{8}\right) = 30\left(-\frac{7}{8}\right)^7 + 3\left(-\frac{7}{8}\right)^6 + 4\left(-\frac{7}{8}\right)^3 - \left(-\frac{7}{8}\right) - 56 \][/tex]
The result is approximately [tex]\(-68.239\)[/tex], which is not zero.

4. Fourth polynomial: [tex]\( f(x) = 56x^7 + 3x^6 + 4x^3 - x - 30 \)[/tex]
[tex]\[ f\left(-\frac{7}{8}\right) = 56\left(-\frac{7}{8}\right)^7 + 3\left(-\frac{7}{8}\right)^6 + 4\left(-\frac{7}{8}\right)^3 - \left(-\frac{7}{8}\right) - 30 \][/tex]
The result is approximately [tex]\(-52.449\)[/tex], which is not zero.

Since the value of the polynomial at [tex]\( x = -\frac{7}{8} \)[/tex] is not zero for any of the four polynomials, we conclude that [tex]\(-\frac{7}{8}\)[/tex] is not a rational root for any of the given functions.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.