At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine if [tex]\(-\frac{7}{8}\)[/tex] is a potential rational root for any of the given polynomials, we need to substitute [tex]\( x = -\frac{7}{8} \)[/tex] into each polynomial and evaluate the result. If the value of the polynomial at [tex]\( x = -\frac{7}{8} \)[/tex] is zero, then [tex]\(-\frac{7}{8}\)[/tex] is indeed a root of that polynomial.
Consider each polynomial one by one:
1. First polynomial: [tex]\( f(x) = 24x^7 + 3x^6 + 4x^3 - x - 28 \)[/tex]
[tex]\[ f\left(-\frac{7}{8}\right) = 24\left(-\frac{7}{8}\right)^7 + 3\left(-\frac{7}{8}\right)^6 + 4\left(-\frac{7}{8}\right)^3 - \left(-\frac{7}{8}\right) - 28 \][/tex]
The result is approximately [tex]\(-37.883\)[/tex], which is not zero.
2. Second polynomial: [tex]\( f(x) = 28x^7 + 3x^6 + 4x^3 - x - 24 \)[/tex]
[tex]\[ f\left(-\frac{7}{8}\right) = 28\left(-\frac{7}{8}\right)^7 + 3\left(-\frac{7}{8}\right)^6 + 4\left(-\frac{7}{8}\right)^3 - \left(-\frac{7}{8}\right) - 24 \][/tex]
The result is approximately [tex]\(-35.454\)[/tex], which is not zero.
3. Third polynomial: [tex]\( f(x) = 30x^7 + 3x^6 + 4x^3 - x - 56 \)[/tex]
[tex]\[ f\left(-\frac{7}{8}\right) = 30\left(-\frac{7}{8}\right)^7 + 3\left(-\frac{7}{8}\right)^6 + 4\left(-\frac{7}{8}\right)^3 - \left(-\frac{7}{8}\right) - 56 \][/tex]
The result is approximately [tex]\(-68.239\)[/tex], which is not zero.
4. Fourth polynomial: [tex]\( f(x) = 56x^7 + 3x^6 + 4x^3 - x - 30 \)[/tex]
[tex]\[ f\left(-\frac{7}{8}\right) = 56\left(-\frac{7}{8}\right)^7 + 3\left(-\frac{7}{8}\right)^6 + 4\left(-\frac{7}{8}\right)^3 - \left(-\frac{7}{8}\right) - 30 \][/tex]
The result is approximately [tex]\(-52.449\)[/tex], which is not zero.
Since the value of the polynomial at [tex]\( x = -\frac{7}{8} \)[/tex] is not zero for any of the four polynomials, we conclude that [tex]\(-\frac{7}{8}\)[/tex] is not a rational root for any of the given functions.
Consider each polynomial one by one:
1. First polynomial: [tex]\( f(x) = 24x^7 + 3x^6 + 4x^3 - x - 28 \)[/tex]
[tex]\[ f\left(-\frac{7}{8}\right) = 24\left(-\frac{7}{8}\right)^7 + 3\left(-\frac{7}{8}\right)^6 + 4\left(-\frac{7}{8}\right)^3 - \left(-\frac{7}{8}\right) - 28 \][/tex]
The result is approximately [tex]\(-37.883\)[/tex], which is not zero.
2. Second polynomial: [tex]\( f(x) = 28x^7 + 3x^6 + 4x^3 - x - 24 \)[/tex]
[tex]\[ f\left(-\frac{7}{8}\right) = 28\left(-\frac{7}{8}\right)^7 + 3\left(-\frac{7}{8}\right)^6 + 4\left(-\frac{7}{8}\right)^3 - \left(-\frac{7}{8}\right) - 24 \][/tex]
The result is approximately [tex]\(-35.454\)[/tex], which is not zero.
3. Third polynomial: [tex]\( f(x) = 30x^7 + 3x^6 + 4x^3 - x - 56 \)[/tex]
[tex]\[ f\left(-\frac{7}{8}\right) = 30\left(-\frac{7}{8}\right)^7 + 3\left(-\frac{7}{8}\right)^6 + 4\left(-\frac{7}{8}\right)^3 - \left(-\frac{7}{8}\right) - 56 \][/tex]
The result is approximately [tex]\(-68.239\)[/tex], which is not zero.
4. Fourth polynomial: [tex]\( f(x) = 56x^7 + 3x^6 + 4x^3 - x - 30 \)[/tex]
[tex]\[ f\left(-\frac{7}{8}\right) = 56\left(-\frac{7}{8}\right)^7 + 3\left(-\frac{7}{8}\right)^6 + 4\left(-\frac{7}{8}\right)^3 - \left(-\frac{7}{8}\right) - 30 \][/tex]
The result is approximately [tex]\(-52.449\)[/tex], which is not zero.
Since the value of the polynomial at [tex]\( x = -\frac{7}{8} \)[/tex] is not zero for any of the four polynomials, we conclude that [tex]\(-\frac{7}{8}\)[/tex] is not a rational root for any of the given functions.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.