Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine if [tex]\(-\frac{7}{8}\)[/tex] is a potential rational root for any of the given polynomials, we need to substitute [tex]\( x = -\frac{7}{8} \)[/tex] into each polynomial and evaluate the result. If the value of the polynomial at [tex]\( x = -\frac{7}{8} \)[/tex] is zero, then [tex]\(-\frac{7}{8}\)[/tex] is indeed a root of that polynomial.
Consider each polynomial one by one:
1. First polynomial: [tex]\( f(x) = 24x^7 + 3x^6 + 4x^3 - x - 28 \)[/tex]
[tex]\[ f\left(-\frac{7}{8}\right) = 24\left(-\frac{7}{8}\right)^7 + 3\left(-\frac{7}{8}\right)^6 + 4\left(-\frac{7}{8}\right)^3 - \left(-\frac{7}{8}\right) - 28 \][/tex]
The result is approximately [tex]\(-37.883\)[/tex], which is not zero.
2. Second polynomial: [tex]\( f(x) = 28x^7 + 3x^6 + 4x^3 - x - 24 \)[/tex]
[tex]\[ f\left(-\frac{7}{8}\right) = 28\left(-\frac{7}{8}\right)^7 + 3\left(-\frac{7}{8}\right)^6 + 4\left(-\frac{7}{8}\right)^3 - \left(-\frac{7}{8}\right) - 24 \][/tex]
The result is approximately [tex]\(-35.454\)[/tex], which is not zero.
3. Third polynomial: [tex]\( f(x) = 30x^7 + 3x^6 + 4x^3 - x - 56 \)[/tex]
[tex]\[ f\left(-\frac{7}{8}\right) = 30\left(-\frac{7}{8}\right)^7 + 3\left(-\frac{7}{8}\right)^6 + 4\left(-\frac{7}{8}\right)^3 - \left(-\frac{7}{8}\right) - 56 \][/tex]
The result is approximately [tex]\(-68.239\)[/tex], which is not zero.
4. Fourth polynomial: [tex]\( f(x) = 56x^7 + 3x^6 + 4x^3 - x - 30 \)[/tex]
[tex]\[ f\left(-\frac{7}{8}\right) = 56\left(-\frac{7}{8}\right)^7 + 3\left(-\frac{7}{8}\right)^6 + 4\left(-\frac{7}{8}\right)^3 - \left(-\frac{7}{8}\right) - 30 \][/tex]
The result is approximately [tex]\(-52.449\)[/tex], which is not zero.
Since the value of the polynomial at [tex]\( x = -\frac{7}{8} \)[/tex] is not zero for any of the four polynomials, we conclude that [tex]\(-\frac{7}{8}\)[/tex] is not a rational root for any of the given functions.
Consider each polynomial one by one:
1. First polynomial: [tex]\( f(x) = 24x^7 + 3x^6 + 4x^3 - x - 28 \)[/tex]
[tex]\[ f\left(-\frac{7}{8}\right) = 24\left(-\frac{7}{8}\right)^7 + 3\left(-\frac{7}{8}\right)^6 + 4\left(-\frac{7}{8}\right)^3 - \left(-\frac{7}{8}\right) - 28 \][/tex]
The result is approximately [tex]\(-37.883\)[/tex], which is not zero.
2. Second polynomial: [tex]\( f(x) = 28x^7 + 3x^6 + 4x^3 - x - 24 \)[/tex]
[tex]\[ f\left(-\frac{7}{8}\right) = 28\left(-\frac{7}{8}\right)^7 + 3\left(-\frac{7}{8}\right)^6 + 4\left(-\frac{7}{8}\right)^3 - \left(-\frac{7}{8}\right) - 24 \][/tex]
The result is approximately [tex]\(-35.454\)[/tex], which is not zero.
3. Third polynomial: [tex]\( f(x) = 30x^7 + 3x^6 + 4x^3 - x - 56 \)[/tex]
[tex]\[ f\left(-\frac{7}{8}\right) = 30\left(-\frac{7}{8}\right)^7 + 3\left(-\frac{7}{8}\right)^6 + 4\left(-\frac{7}{8}\right)^3 - \left(-\frac{7}{8}\right) - 56 \][/tex]
The result is approximately [tex]\(-68.239\)[/tex], which is not zero.
4. Fourth polynomial: [tex]\( f(x) = 56x^7 + 3x^6 + 4x^3 - x - 30 \)[/tex]
[tex]\[ f\left(-\frac{7}{8}\right) = 56\left(-\frac{7}{8}\right)^7 + 3\left(-\frac{7}{8}\right)^6 + 4\left(-\frac{7}{8}\right)^3 - \left(-\frac{7}{8}\right) - 30 \][/tex]
The result is approximately [tex]\(-52.449\)[/tex], which is not zero.
Since the value of the polynomial at [tex]\( x = -\frac{7}{8} \)[/tex] is not zero for any of the four polynomials, we conclude that [tex]\(-\frac{7}{8}\)[/tex] is not a rational root for any of the given functions.
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.