Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine which expression is equivalent to [tex]\( 24^{\frac{1}{3}} \)[/tex], we can break down the problem step-by-step:
1. Prime Factorization:
Let's first write 24 as a product of its prime factors.
[tex]\[ 24 = 2^3 \times 3 \][/tex]
2. Applying the Cube Root:
We need to find the cube root of 24, which can be expressed as:
[tex]\[ 24^{\frac{1}{3}} = (2^3 \times 3)^{\frac{1}{3}} \][/tex]
3. Distributing the Cube Root:
Distributing the cube root over the product, we get:
[tex]\[ 24^{\frac{1}{3}} = (2^3)^{\frac{1}{3}} \times 3^{\frac{1}{3}} \][/tex]
4. Simplifying:
The cube root of [tex]\(2^3\)[/tex] is [tex]\(2\)[/tex], because:
[tex]\[ (2^3)^{\frac{1}{3}} = 2 \][/tex]
Therefore, we have:
[tex]\[ 24^{\frac{1}{3}} = 2 \times 3^{\frac{1}{3}} \][/tex]
5. Match with the Given Options:
We now compare [tex]\( 2 \times 3^{\frac{1}{3}} \)[/tex] with the given options:
- [tex]\(2 \sqrt{3}\)[/tex]
- [tex]\(2 \sqrt[3]{3}\)[/tex]
- [tex]\(2 \sqrt{6}\)[/tex]
- [tex]\(2 \sqrt[3]{6}\)[/tex]
It's clear that:
[tex]\[ 2 \times 3^{\frac{1}{3}} = 2 \sqrt[3]{3} \][/tex]
Therefore, the expression equivalent to [tex]\( 24^{\frac{1}{3}} \)[/tex] is:
[tex]\[ 2 \sqrt[3]{3} \][/tex]
1. Prime Factorization:
Let's first write 24 as a product of its prime factors.
[tex]\[ 24 = 2^3 \times 3 \][/tex]
2. Applying the Cube Root:
We need to find the cube root of 24, which can be expressed as:
[tex]\[ 24^{\frac{1}{3}} = (2^3 \times 3)^{\frac{1}{3}} \][/tex]
3. Distributing the Cube Root:
Distributing the cube root over the product, we get:
[tex]\[ 24^{\frac{1}{3}} = (2^3)^{\frac{1}{3}} \times 3^{\frac{1}{3}} \][/tex]
4. Simplifying:
The cube root of [tex]\(2^3\)[/tex] is [tex]\(2\)[/tex], because:
[tex]\[ (2^3)^{\frac{1}{3}} = 2 \][/tex]
Therefore, we have:
[tex]\[ 24^{\frac{1}{3}} = 2 \times 3^{\frac{1}{3}} \][/tex]
5. Match with the Given Options:
We now compare [tex]\( 2 \times 3^{\frac{1}{3}} \)[/tex] with the given options:
- [tex]\(2 \sqrt{3}\)[/tex]
- [tex]\(2 \sqrt[3]{3}\)[/tex]
- [tex]\(2 \sqrt{6}\)[/tex]
- [tex]\(2 \sqrt[3]{6}\)[/tex]
It's clear that:
[tex]\[ 2 \times 3^{\frac{1}{3}} = 2 \sqrt[3]{3} \][/tex]
Therefore, the expression equivalent to [tex]\( 24^{\frac{1}{3}} \)[/tex] is:
[tex]\[ 2 \sqrt[3]{3} \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.