Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To find the probability of rolling a sum of 11 with a pair of standard six-sided dice, follow these steps:
1. Identify the possible outcomes for each die:
Each die can land on any one of the six faces. We’ll list these faces as {1, 2, 3, 4, 5, 6}.
2. Consider all possible pairs of outcomes from the two dice:
Since each die has 6 faces, there are [tex]\(6 \times 6 = 36\)[/tex] possible outcomes when rolling two dice.
3. Determine the number of successful outcomes:
We need to find pairs [tex]\((d1, d2)\)[/tex] such that the sum [tex]\(d1 + d2 = 11\)[/tex]. Checking all combinations:
- If [tex]\(d1 = 5\)[/tex], then [tex]\(d2\)[/tex] must be 6 (as [tex]\(5+6=11\)[/tex]).
- If [tex]\(d1 = 6\)[/tex], then [tex]\(d2\)[/tex] must be 5 (as [tex]\(6+5=11\)[/tex]).
So the successful outcomes where the sum is 11 are:
[tex]\[ (5, 6) \text{ and } (6, 5) \][/tex]
There are exactly 2 successful outcomes.
4. Calculate the probability:
The probability [tex]\(P(\text{sum of 11})\)[/tex] is given by the ratio of the number of successful outcomes to the total number of outcomes:
[tex]\[ P(\text{sum of 11}) = \frac{\text{Number of Successful Outcomes}}{\text{Total Number of Outcomes}} = \frac{2}{36} \][/tex]
5. Reduce the fraction:
Simplify [tex]\(\frac{2}{36}\)[/tex] to its lowest terms:
[tex]\[ \frac{2}{36} = \frac{1}{18} \][/tex]
Therefore, the probability of rolling a sum of 11 with a pair of standard dice is:
[tex]\[ \boxed{\frac{1}{18}} \][/tex]
1. Identify the possible outcomes for each die:
Each die can land on any one of the six faces. We’ll list these faces as {1, 2, 3, 4, 5, 6}.
2. Consider all possible pairs of outcomes from the two dice:
Since each die has 6 faces, there are [tex]\(6 \times 6 = 36\)[/tex] possible outcomes when rolling two dice.
3. Determine the number of successful outcomes:
We need to find pairs [tex]\((d1, d2)\)[/tex] such that the sum [tex]\(d1 + d2 = 11\)[/tex]. Checking all combinations:
- If [tex]\(d1 = 5\)[/tex], then [tex]\(d2\)[/tex] must be 6 (as [tex]\(5+6=11\)[/tex]).
- If [tex]\(d1 = 6\)[/tex], then [tex]\(d2\)[/tex] must be 5 (as [tex]\(6+5=11\)[/tex]).
So the successful outcomes where the sum is 11 are:
[tex]\[ (5, 6) \text{ and } (6, 5) \][/tex]
There are exactly 2 successful outcomes.
4. Calculate the probability:
The probability [tex]\(P(\text{sum of 11})\)[/tex] is given by the ratio of the number of successful outcomes to the total number of outcomes:
[tex]\[ P(\text{sum of 11}) = \frac{\text{Number of Successful Outcomes}}{\text{Total Number of Outcomes}} = \frac{2}{36} \][/tex]
5. Reduce the fraction:
Simplify [tex]\(\frac{2}{36}\)[/tex] to its lowest terms:
[tex]\[ \frac{2}{36} = \frac{1}{18} \][/tex]
Therefore, the probability of rolling a sum of 11 with a pair of standard dice is:
[tex]\[ \boxed{\frac{1}{18}} \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.