Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Let's simplify the polynomial [tex]\(5 s^6 t^2 + 6 s t^9 - 8 s^6 t^2 - 6 t^7\)[/tex] and analyze its terms.
Step-by-Step Simplification:
1. Combine like terms.
- The terms [tex]\(5 s^6 t^2\)[/tex] and [tex]\(-8 s^6 t^2\)[/tex] are like terms because they share the same variables and degrees.
- The simplification of these terms is:
[tex]\[ 5 s^6 t^2 - 8 s^6 t^2 = (5 - 8) s^6 t^2 = -3 s^6 t^2 \][/tex]
2. Collect the simplified terms:
- [tex]\(-3 s^6 t^2\)[/tex]
- [tex]\(6 s t^9\)[/tex]
- [tex]\(-6 t^7\)[/tex]
So the simplified polynomial is:
[tex]\[ -3 s^6 t^2 + 6 s t^9 - 6 t^7 \][/tex]
Determine the Number of Terms:
- The polynomial now consists of three distinct terms: [tex]\(-3 s^6 t^2\)[/tex], [tex]\(6 s t^9\)[/tex], and [tex]\(-6 t^7\)[/tex].
Determine the Degree of the Polynomial:
- The degree of a term in a polynomial is the sum of the exponents of the variables in that term.
1. For [tex]\(-3 s^6 t^2\)[/tex], the degree is [tex]\(6 + 2 = 8\)[/tex].
2. For [tex]\(6 s t^9\)[/tex], the degree is [tex]\(1 + 9 = 10\)[/tex].
3. For [tex]\(-6 t^7\)[/tex], the degree is [tex]\(7\)[/tex].
- The degree of the polynomial is determined by the term with the highest degree, which is [tex]\(6 s t^9\)[/tex] with a degree of [tex]\(10\)[/tex].
Conclusion:
The simplified polynomial has 3 terms and a degree of 10.
Therefore, the correct statement is:
- It has 3 terms and a degree of 10.
Step-by-Step Simplification:
1. Combine like terms.
- The terms [tex]\(5 s^6 t^2\)[/tex] and [tex]\(-8 s^6 t^2\)[/tex] are like terms because they share the same variables and degrees.
- The simplification of these terms is:
[tex]\[ 5 s^6 t^2 - 8 s^6 t^2 = (5 - 8) s^6 t^2 = -3 s^6 t^2 \][/tex]
2. Collect the simplified terms:
- [tex]\(-3 s^6 t^2\)[/tex]
- [tex]\(6 s t^9\)[/tex]
- [tex]\(-6 t^7\)[/tex]
So the simplified polynomial is:
[tex]\[ -3 s^6 t^2 + 6 s t^9 - 6 t^7 \][/tex]
Determine the Number of Terms:
- The polynomial now consists of three distinct terms: [tex]\(-3 s^6 t^2\)[/tex], [tex]\(6 s t^9\)[/tex], and [tex]\(-6 t^7\)[/tex].
Determine the Degree of the Polynomial:
- The degree of a term in a polynomial is the sum of the exponents of the variables in that term.
1. For [tex]\(-3 s^6 t^2\)[/tex], the degree is [tex]\(6 + 2 = 8\)[/tex].
2. For [tex]\(6 s t^9\)[/tex], the degree is [tex]\(1 + 9 = 10\)[/tex].
3. For [tex]\(-6 t^7\)[/tex], the degree is [tex]\(7\)[/tex].
- The degree of the polynomial is determined by the term with the highest degree, which is [tex]\(6 s t^9\)[/tex] with a degree of [tex]\(10\)[/tex].
Conclusion:
The simplified polynomial has 3 terms and a degree of 10.
Therefore, the correct statement is:
- It has 3 terms and a degree of 10.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.