At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine which algebraic expression is a trinomial, we need to count the number of terms in each expression. A trinomial is defined as a polynomial with exactly three terms.
Let's analyze each given expression step-by-step.
1. [tex]\( x^3 + x^2 - \sqrt{x} \)[/tex]
This expression consists of three terms:
1) [tex]\( x^3 \)[/tex]
2) [tex]\( x^2 \)[/tex]
3) [tex]\( -\sqrt{x} \)[/tex]
Thus, the expression [tex]\( x^3 + x^2 - \sqrt{x} \)[/tex] has 3 terms.
2. [tex]\( 2x^3 - x^2 \)[/tex]
This expression consists of two terms:
1) [tex]\( 2x^3 \)[/tex]
2) [tex]\( -x^2 \)[/tex]
Thus, the expression [tex]\( 2x^3 - x^2 \)[/tex] has 2 terms.
3. [tex]\( 4x^3 + x^2 - \frac{1}{x} \)[/tex]
This expression consists of three terms:
1) [tex]\( 4x^3 \)[/tex]
2) [tex]\( x^2 \)[/tex]
3) [tex]\( -\frac{1}{x} \)[/tex]
Thus, the expression [tex]\( 4x^3 + x^2 - \frac{1}{x} \)[/tex] has 3 terms.
4. [tex]\( x^6 - x + \sqrt{6} \)[/tex]
This expression consists of three terms:
1) [tex]\( x^6 \)[/tex]
2) [tex]\( -x \)[/tex]
3) [tex]\( \sqrt{6} \)[/tex]
Thus, the expression [tex]\( x^6 - x + \sqrt{6} \)[/tex] has 3 terms.
From the analysis, the expressions with exactly three terms (trinomials) are:
- [tex]\( x^3 + x^2 - \sqrt{x} \)[/tex]
- [tex]\( 4x^3 + x^2 - \frac{1}{x} \)[/tex]
- [tex]\( x^6 - x + \sqrt{6} \)[/tex]
The expression that is the first trigonomial in the given list is:
[tex]\[ x^3 + x^2 - \sqrt{x} \][/tex]
Therefore, the algebraic expression [tex]\( x^3 + x^2 - \sqrt{x} \)[/tex] is the first trinomial in the given list.
Let's analyze each given expression step-by-step.
1. [tex]\( x^3 + x^2 - \sqrt{x} \)[/tex]
This expression consists of three terms:
1) [tex]\( x^3 \)[/tex]
2) [tex]\( x^2 \)[/tex]
3) [tex]\( -\sqrt{x} \)[/tex]
Thus, the expression [tex]\( x^3 + x^2 - \sqrt{x} \)[/tex] has 3 terms.
2. [tex]\( 2x^3 - x^2 \)[/tex]
This expression consists of two terms:
1) [tex]\( 2x^3 \)[/tex]
2) [tex]\( -x^2 \)[/tex]
Thus, the expression [tex]\( 2x^3 - x^2 \)[/tex] has 2 terms.
3. [tex]\( 4x^3 + x^2 - \frac{1}{x} \)[/tex]
This expression consists of three terms:
1) [tex]\( 4x^3 \)[/tex]
2) [tex]\( x^2 \)[/tex]
3) [tex]\( -\frac{1}{x} \)[/tex]
Thus, the expression [tex]\( 4x^3 + x^2 - \frac{1}{x} \)[/tex] has 3 terms.
4. [tex]\( x^6 - x + \sqrt{6} \)[/tex]
This expression consists of three terms:
1) [tex]\( x^6 \)[/tex]
2) [tex]\( -x \)[/tex]
3) [tex]\( \sqrt{6} \)[/tex]
Thus, the expression [tex]\( x^6 - x + \sqrt{6} \)[/tex] has 3 terms.
From the analysis, the expressions with exactly three terms (trinomials) are:
- [tex]\( x^3 + x^2 - \sqrt{x} \)[/tex]
- [tex]\( 4x^3 + x^2 - \frac{1}{x} \)[/tex]
- [tex]\( x^6 - x + \sqrt{6} \)[/tex]
The expression that is the first trigonomial in the given list is:
[tex]\[ x^3 + x^2 - \sqrt{x} \][/tex]
Therefore, the algebraic expression [tex]\( x^3 + x^2 - \sqrt{x} \)[/tex] is the first trinomial in the given list.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.