Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Let's solve the given system of simultaneous equations step-by-step:
[tex]\[ \begin{aligned} (1) \quad y^2 + xy + 3 &= 0 \\ (2) \quad x &= 6y + 5 \end{aligned} \][/tex]
### Part (a): Show that [tex]\(7 y^2 + 5 y + 3 = 0\)[/tex]
1. Substitute [tex]\(x\)[/tex] from equation (2) into equation (1):
Given [tex]\( x = 6y + 5 \)[/tex], we substitute [tex]\( x \)[/tex] in equation (1):
[tex]\[ y^2 + (6y + 5)y + 3 = 0 \][/tex]
2. Expand and simplify the equation:
[tex]\[ y^2 + 6y^2 + 5y + 3 = 0 \][/tex]
Combine like terms:
[tex]\[ 7y^2 + 5y + 3 = 0 \][/tex]
This confirms that the equation [tex]\( 7y^2 + 5y + 3 = 0 \)[/tex] is indeed correct.
### Part (b): Work out how many solutions these simultaneous equations have
1. Solve the quadratic equation [tex]\( 7y^2 + 5y + 3 = 0 \)[/tex] to find the values of [tex]\( y \)[/tex]:
The quadratic formula is given by:
[tex]\[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Here, [tex]\( a = 7 \)[/tex], [tex]\( b = 5 \)[/tex], and [tex]\( c = 3 \)[/tex]:
[tex]\[ y = \frac{-5 \pm \sqrt{5^2 - 4 \cdot 7 \cdot 3}}{2 \cdot 7} \][/tex]
[tex]\[ y = \frac{-5 \pm \sqrt{25 - 84}}{14} \][/tex]
[tex]\[ y = \frac{-5 \pm \sqrt{-59}}{14} \][/tex]
Since [tex]\(\sqrt{-59} = \sqrt{59}i\)[/tex] (where [tex]\(i\)[/tex] is the imaginary unit), we have:
[tex]\[ y = \frac{-5 \pm \sqrt{59}i}{14} \][/tex]
This gives us two solutions for [tex]\( y \)[/tex]:
[tex]\[ y_1 = \frac{-5 - \sqrt{59}i}{14}, \quad y_2 = \frac{-5 + \sqrt{59}i}{14} \][/tex]
2. Calculate the corresponding values of [tex]\( x \)[/tex] for each [tex]\( y \)[/tex] using equation (2):
Substituting [tex]\( y_1 \)[/tex] into equation (2):
[tex]\[ x_1 = 6y_1 + 5 = 6 \left(\frac{-5 - \sqrt{59}i}{14}\right) + 5 \][/tex]
[tex]\[ x_1 = \frac{-30 - 6\sqrt{59}i}{14} + 5 = \frac{-30 - 6\sqrt{59}i}{14} + \frac{70}{14} \][/tex]
[tex]\[ x_1 = \frac{-30 - 6\sqrt{59}i + 70}{14} = \frac{40 - 6\sqrt{59}i}{14} = \frac{20}{7} - \frac{3\sqrt{59}i}{7} \][/tex]
Similarly, for [tex]\( y_2 \)[/tex]:
[tex]\[ x_2 = 6y_2 + 5 = 6 \left(\frac{-5 + \sqrt{59}i}{14}\right) + 5 \][/tex]
[tex]\[ x_2 = \frac{-30 + 6\sqrt{59}i}{14} + 5 = \frac{-30 + 6\sqrt{59}i}{14} + \frac{70}{14} \][/tex]
[tex]\[ x_2 = \frac{-30 + 6\sqrt{59}i + 70}{14} = \frac{40 + 6\sqrt{59}i}{14} = \frac{20}{7} + \frac{3\sqrt{59}i}{7} \][/tex]
In summary, the quadratic equation [tex]\( 7y^2 + 5y + 3 = 0 \)[/tex] has 2 solutions for [tex]\( y \)[/tex]:
[tex]\[ y_1 = \frac{-5 - \sqrt{59}i}{14}, \quad y_2 = \frac{-5 + \sqrt{59}i}{14} \][/tex]
Correspondingly, the [tex]\( x \)[/tex] values are:
[tex]\[ x_1 = \frac{20}{7} - \frac{3\sqrt{59}i}{7}, \quad x_2 = \frac{20}{7} + \frac{3\sqrt{59}i}{7} \][/tex]
Thus, there are 2 solutions to the system of simultaneous equations.
[tex]\[ \begin{aligned} (1) \quad y^2 + xy + 3 &= 0 \\ (2) \quad x &= 6y + 5 \end{aligned} \][/tex]
### Part (a): Show that [tex]\(7 y^2 + 5 y + 3 = 0\)[/tex]
1. Substitute [tex]\(x\)[/tex] from equation (2) into equation (1):
Given [tex]\( x = 6y + 5 \)[/tex], we substitute [tex]\( x \)[/tex] in equation (1):
[tex]\[ y^2 + (6y + 5)y + 3 = 0 \][/tex]
2. Expand and simplify the equation:
[tex]\[ y^2 + 6y^2 + 5y + 3 = 0 \][/tex]
Combine like terms:
[tex]\[ 7y^2 + 5y + 3 = 0 \][/tex]
This confirms that the equation [tex]\( 7y^2 + 5y + 3 = 0 \)[/tex] is indeed correct.
### Part (b): Work out how many solutions these simultaneous equations have
1. Solve the quadratic equation [tex]\( 7y^2 + 5y + 3 = 0 \)[/tex] to find the values of [tex]\( y \)[/tex]:
The quadratic formula is given by:
[tex]\[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Here, [tex]\( a = 7 \)[/tex], [tex]\( b = 5 \)[/tex], and [tex]\( c = 3 \)[/tex]:
[tex]\[ y = \frac{-5 \pm \sqrt{5^2 - 4 \cdot 7 \cdot 3}}{2 \cdot 7} \][/tex]
[tex]\[ y = \frac{-5 \pm \sqrt{25 - 84}}{14} \][/tex]
[tex]\[ y = \frac{-5 \pm \sqrt{-59}}{14} \][/tex]
Since [tex]\(\sqrt{-59} = \sqrt{59}i\)[/tex] (where [tex]\(i\)[/tex] is the imaginary unit), we have:
[tex]\[ y = \frac{-5 \pm \sqrt{59}i}{14} \][/tex]
This gives us two solutions for [tex]\( y \)[/tex]:
[tex]\[ y_1 = \frac{-5 - \sqrt{59}i}{14}, \quad y_2 = \frac{-5 + \sqrt{59}i}{14} \][/tex]
2. Calculate the corresponding values of [tex]\( x \)[/tex] for each [tex]\( y \)[/tex] using equation (2):
Substituting [tex]\( y_1 \)[/tex] into equation (2):
[tex]\[ x_1 = 6y_1 + 5 = 6 \left(\frac{-5 - \sqrt{59}i}{14}\right) + 5 \][/tex]
[tex]\[ x_1 = \frac{-30 - 6\sqrt{59}i}{14} + 5 = \frac{-30 - 6\sqrt{59}i}{14} + \frac{70}{14} \][/tex]
[tex]\[ x_1 = \frac{-30 - 6\sqrt{59}i + 70}{14} = \frac{40 - 6\sqrt{59}i}{14} = \frac{20}{7} - \frac{3\sqrt{59}i}{7} \][/tex]
Similarly, for [tex]\( y_2 \)[/tex]:
[tex]\[ x_2 = 6y_2 + 5 = 6 \left(\frac{-5 + \sqrt{59}i}{14}\right) + 5 \][/tex]
[tex]\[ x_2 = \frac{-30 + 6\sqrt{59}i}{14} + 5 = \frac{-30 + 6\sqrt{59}i}{14} + \frac{70}{14} \][/tex]
[tex]\[ x_2 = \frac{-30 + 6\sqrt{59}i + 70}{14} = \frac{40 + 6\sqrt{59}i}{14} = \frac{20}{7} + \frac{3\sqrt{59}i}{7} \][/tex]
In summary, the quadratic equation [tex]\( 7y^2 + 5y + 3 = 0 \)[/tex] has 2 solutions for [tex]\( y \)[/tex]:
[tex]\[ y_1 = \frac{-5 - \sqrt{59}i}{14}, \quad y_2 = \frac{-5 + \sqrt{59}i}{14} \][/tex]
Correspondingly, the [tex]\( x \)[/tex] values are:
[tex]\[ x_1 = \frac{20}{7} - \frac{3\sqrt{59}i}{7}, \quad x_2 = \frac{20}{7} + \frac{3\sqrt{59}i}{7} \][/tex]
Thus, there are 2 solutions to the system of simultaneous equations.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.