Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

The equation [tex]\( x + 2y = 16 \)[/tex] is in standard form. What is the slope of the line?

A. [tex]\(-2\)[/tex]
B. [tex]\(-1\)[/tex]
C. [tex]\(-0.5\)[/tex]
D. [tex]\(0.5\)[/tex]


Sagot :

To determine the slope of the line given by the equation [tex]\(x + 2y = 16\)[/tex], we need to rewrite the equation in slope-intercept form, which is [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] represents the slope.

Starting with the given equation:
[tex]\[ x + 2y = 16 \][/tex]

Our goal is to solve for [tex]\(y\)[/tex]. First, isolate the [tex]\(2y\)[/tex] term by subtracting [tex]\(x\)[/tex] from both sides:
[tex]\[ 2y = -x + 16 \][/tex]

Next, divide every term by 2 to solve for [tex]\(y\)[/tex]:
[tex]\[ y = -\frac{1}{2}x + 8 \][/tex]

Now, the equation is in slope-intercept form [tex]\(y = mx + b\)[/tex]. From the equation, we can see that the coefficient of [tex]\(x\)[/tex] is [tex]\(-\frac{1}{2}\)[/tex], which represents the slope [tex]\(m\)[/tex].

Therefore, the slope of the line [tex]\(x + 2y = 16\)[/tex] is:
[tex]\[ \boxed{-0.5} \][/tex]